

SYNASSEMBLER
SYNAPSE Software (c) 1982

An Adaptation by Steve Hales

of the S.C. Assembler II - Version 4.0

--
SYNASSEMBLER
INDEX

 Introduction 1
 Commands 4
 Editing commands Overview 4
 Editing commands-Detail 6
 DOS commands 16
 Monitor commands 19
 Source Program Format 23
 Directives 25
 Labels 33
 Memory Usage 36
 Operand Expressions 36
 Decimal and Hexidecimal Numbers 37
 Asterisk 38
 Addressing Modes 39
 Editing Features 43
 Debugging Programs 44
 Step 45
 Trace 46
 Examine and Change Registers 46

APPENDIX

 Monitor Tricks..............................Appendix...I
 Memory Map..................................Appendix..II
 Converting Atari Assembler/Editor Source....Appendix.III
 Bibliography................................Appendix..IV
 Instruction Code Table......................Appendix...V

-1-

INTRODUCTION

SYNASSEMBLER is a convenient and powerful tool for software development on the Atari
computer system. The assembler uses standard 6502 mnemonics and syntax, and includes
many useful features for creating, editing, assembling and testing your assembly
language programs. Now assembly language programming is almost as easy as
programming in BASIC.

Here is a summary of the most exciting features:

* Full use of the standard Atari Screen Editor
* Tab stops for opcode, operand, and comment fields
* Fast parameterized renumber and delete command
* Uses BASIC like commands for files (eg. LOAD, SAVE, BLOAD etc.)
* Labels up to 32 characters long (lowercase letters and . accepted)
* English ERROR messages
* Ability to append source programs from tape or disk
* Display of memory usage
* Multiple source files, using .IN directive
* Store object code directly to disk file, using the .TF directive
* Listing to screen option using .LI ON and .LI OFF
* Assembles 6500 lines/minute
* Local labels
* Offending line is listed after an ERROR occurs
* Value of .EQ and address of .BS are printed on listing
* ASSEMBLER, DOS, HARDWARE, and OS locations protected during assembly
* ATASCII literals in address expressions
* Symbol table printed in alphabetical order

Synassembler requires 48K of RAM and one disk drive to operate. Very large programs
can now be developed, using the "INCLUDE" and "TARGET FILE" capabilities. These
allow the assembly of multiple source files, and direct storage of object code on
binary files.

-2-

We have included several sample programs to illustrate the use of the SYNASSEMBLER as
well as being useful routines. These include:

1. HARSH SCROLL :A Utility to coarse scroll the Atari screen display

2. FINE SCROLL .:A utility to fine scroll the Atari screen display

3. PM MOVER.....:A utility to move players and missiles on the screen

4. BELL.........:Ring the bell using Atari sound generators.

Blanks are compressed in source files to conserve memory and save space on disks.
The compression algorithm replaces any string of consecutive blanks with a single

code byte. Also, Atari assembler files are compatible and only require minor
modification to assemble correctly. (See APPENDIX for further detail). Synassembler
uses a memory-efficient method of storing the symbol table, with variable length
entries. The symbol table is maintained in alphabetical order, using a high speed
hashing scheme. The symbol table is maintained in memory until a new assembly is
started or the NEW command is typed. This allows the RUN and VAL commands to be more
useful and effective.

-3-

Assembler error messages are printed on the Screen and accompanied by a pleasant bell
like tone on the speaker. (At least as pleasant as an ERROR message can be). After
an assembly error is detected the offending line is listed to the screen
automatically, in a position for easy editing.

-4-

COMMANDS

There are three types of commands in the SYNASSEMBLER: EDITING commands DOS commands
and MONITOR commands. The EDITING commands are used to control the Editor and the
assembler. Commands are typed immediately after the prompt symbol, which looks like
this [Ok.].

EDITING COMMANDS
There are seventeen editing commands in the SYNASSEMBLER.
 All editing commands may be abbreviated to the first three
 letters if you so desire.

 ASM............Assemble source program, put object program
 into memory, and produce assembly listing.

 COPy...........Duplicates specified lines
 in the source.

 DELete.........Delete specified line.

 FINd...........List all lines containing the
 specified string.

 HIDe...........Changes the HIMEM pointer to
 'hide' current source code
 prior to a MERge command.

 INCrement......Set the line # increment for
 automatic line numbering

 LISt...........List the source program or

 specified lines of source code.

-5-

 MEMory.........Display the beginning and ending address

 MERge..........Use with HIDe to join source programs

 MOVe...........Moves a line of source code from one specified location to
another

 NEW............Delete the entire source program

 RENumber.......Renumber all or specified lines of source code

 REPlace........Replace a specified string with another
specified string

 REStore........Restores HIMEM pointer after HIDe and MERge.

 RUN............Begins execution of your object program

 VAL............Evaluates an operand expression and prints the value in
hexadecimal

 MON............Exit the editor and enter the monitor

-6-

EDITING COMMAND DETAIL

The SYNASSEMBLER editor, combines the powerful Atari screen editing features with a
BASIC-like line editor, Source programs are entered and edited in almost exactly the
same way you would enter and edit an Atari BASIC program.

ASM command:

SYNASSEMBLER is a two pass assembler. The ASM command initiates assembly of your
source program. During the first pass it builds a symbol table with the definition
of every label that is used in your program. During the second pass the assembler
stores the object code into memory or disk and produces an assembly listing. At the
end of the second pass a list, in alphabetical order, of all the labels and their
definitions is produced.

If any errors are detected during either pass, an error message will be printed as
well as the offending line. The error message will briefly explain the type of error
encountered and the line will be positioned for easy editing. All of these messages
abort the assembly process so that as soon as you correct the error condition you may
immediately restart the assembly.

If you are listing the assembly to the screen you may use the [CTRL]+[1] control to
start and stop your listing. You may abort the assembly process by hitting the
[BREAK] key in pass two of the SYNASSEMBLER.

-7-

COPY L1 L2

This command places a copy of line L2 just before L1 in the source. The new line is
assigned line number L1. The old line L2 remains in the source. This command should
be followed by a renumber command if there are multiple lines with the same line
number in the source.

COPY L1 L2 L3

This command places a copy of lines L2 through L3 just before line L1 in the source.
The old lines are assigned line number L1. The old line L2 through L3 remain in the
source. This command should be followed by a renumber command if there are any
multiple lines with the same line number in the source.

DELete command:

Deletes a line or a range of lines from your source program. Another way to delete a
sinqle line is to type it's line #, followed immediately by a carriage return.

HIDe AND MERge

These two commands, when used with the LOAD command allow you to join a program from
disk or tape to a program that is already in memory.

HIDe temporarily changes the HIMEM pointer so that it appears as if there were no
source proaram in memory. To remind you that you are HIDe-ing, the prompt symbol
changes to [H] ok. After HIDe-ing a program, you can load another one from disk or
tape. Then you type MERge to join the two programs together.

-8-

After this sequence of commands the program which was already in memory will follow
after the program just LOADed. If the line numbers are not already as you wish them
to be, you can use the RENUMBER command to assign new ones.

For example, suppose that we have 2 source programs on the disk named "PART1" and
"PART2". We want to join them together so that "PART1" precedes "PART2".

 Ok.
 LOAD "D:PART1"
 Ok.
 LIST
 00010 * PROGPAM NUMBER ONE
 00020 MAIN JSR SUBROUTINE
 00030 RTS
 Ok.

 LOAD "D:PART2"
 Ok.
 LIST
 00010 * PROGRAM NUMBER TWO
 00020 SUBROUTINE
 00030 LDA BOAT.LOC
 00040 ASL
 00050 ASL
 00060 RTS
 Ok.
 HIDE
 [H] Ok.
 LOAD "D:PART1"
 [H] Ok.
 LIST
 00010 * PROGRAM NUMBER ONE
 00020 MAIN JSR SUBROUTINE
 00030 RTS
 [H] Ok.
 MERGE
 Ok.

-9-

INCrement
Sets the increment used for automatic line number generation. The increment is
normally 10, but you may set it to any value between 0 and 9999.

 INC 5

FINd
The FINd command allows you to search through your source program for a given text
string, and list all the lines that contain that string. The correct procedure for
use of this command is as follows: Type FINd, followed by a space and then the string
for which you are searching. Every character you type between the space and the
carriage return is part of the search key. (NOTE: you may append or prefix spaces to
any string to perform label searches.)

LIST L1 L2

Lists a single line, a range of lines or your entire program. It works just like the
list command in BASIC. While a program or range of lines is listing you can use the
standard Atari pause control [CTRL1], to start and stop the listing to the screen.
You may abort the listing by pressing the [BREAK] key.

-10-

MEMory

Displays the beginning and ending memory address of the source program and of the
symbol table.

Source program: $9B99-9C1F
 Source length: $0086
 Symbol table: $1F00-1F00

Memory between the top of the symbol table and the bottom of the source program is
free to be used without clobbering anything.

MERge
 SEE "HIDe and MERge"

MOVe L1 L2

This command places a copy of line L2 just before L1 in the source. The new line is
assigned line number L1. The old line L2 is removed from the source. This command
should be followed by a renumber command if there are multiple lines with the same
line number in the source.

MOVe L1 L2 L3

This command places a copy of lines L2 through L3 just before line L1 in the source.
The new lines are assigned line number L1. The old lines L2 through L3 are removed
from the source. This command should be followed by a renumber command if there are
multiple lines with the same line number in the source.

-11-

RUN

Begins execution of your object program. An expression MUST follow the RUN command
to define the place to begin execution of the program. For example, "RUN BEGIN" will
cause execution to begin at the point in your program where the label BEGIN is
defined. Your program will return to SYNASSEMBLER by using an RTS instruction in
your program. You may abort your program by hitting the [RESET] key. Or, you may
use the [BREAK] key to break and fall back to the monitor.

NEW

This command acts just like it's BASIC counterpart. It deletes the current source
program from memory and restarts SYNASSEMBLER just as though you were to reboot the
program.

NOTE: A source program must, of course, be assembled into memory before it can be
executed with the RUN command.

RENumber

Renumbers all or part of the lines in your source program with the specified starting
line number and increment. There are three optional parameters for specyifying the
line number to assign the first renumbered line (base), the increment, and the place
in your program to begin renumbering (start). There are four possible forms of the
command:

 REN Renumber the whole source program:
 BASE=1000, INC=10, START=0

 REN # Renumber the whole source program:

 BASE=#, INC=10, START=0

 REN #1,#2 Renumber the whole source program:
 BASE=#1, INC=#2, START=0

 REN #1,#2,#3 Renumber all lines from #3 through the end.
 BASE=#1, INC=#2, START=#3

-12-

 The last form above is useful for opening up a "hole" in the line
 numbers for entering a new section of code.

 OK.
 LIST
 00000 * A RENUMBER EXAMPLE
 00003 START LDA #100
 00013 STA $95
 00058 LDA #99
 00103 STA $A0
 00110 RTS
 Ok.
 REN
 Ok.
 LIST
 00010 * A RENUMBER EXAMPLE
 00020 START LDA #100
 00030 STA $95
 00040 LDA #90
 00050 STA $A0
 00060 RTS
 Ok.
 REN 100
 Ok.
 LIST
 00100 * A RENUMBER EXAMPLE
 00110 START LOA #100
 00120 STA $95
 00130 LDA #90
 00140 STA $A0
 00150 RTS
 Ok.

--13-

 REN 2000,4
 Ok.
 LIST
 02000 * A RENUMBER EXAMPLE
 02004 START LDA #100
 02008 STA $95
 02012 LDA #90
 02016 STA $A0
 02020 RTS
 OK.
 REN 3000,10,2008
 OK.

 LIST
 02000 * A RENUMBER EXAMPLE
 02004 START LDA #100
 03000 STA $95
 03010 LDA #90
 03020 STA $A0
 03030 RTS

REPlace dS1dS2d

This command replaces all occurences of string S1 with string S2 in the source. d is
a delimiter and must be a non-space printable character that does not appear in
either, S1 or S2.

-14-

REPlace dSidS2dtP

This command causes a search to be made for string S1. The search starts at the
beginning of the source. Whenever S1 is found, the line containing it is listed and
the user is prompted for 1 of 3 actions:

 Y or [RETURN]-relace S1 with S2 and continue.
 N-do not replace S1 with S2 and continue search.
 X-do not replace S1 with S2 and stop search.

d is a delimiter and must be a non-space, printable character
not appearing in either SI or S2.

REStore

Restores the root source program if an assembly is aborted while inside an "included"
module.

The 'root source program" is the source program that is in memory at the time the
"ASM" command is issued. If this source program uses the ".IN" directive to include
additional source files, it is possible that assembly might be aborted either
manually by typing a [BREAK] key during the listing phase, or automatically due to an
error in the source program.

--15-

If the assembly is aborted during the time that the root program is hidden, the
prompt character changes from "Ok" to "[I] Ok". The RESTORE command will reset the
memory pointers so that the root program is no longer hidden, and change the prompt
character back to "Ok".

You do not have to use the REStore command after an abort unless you wish to get back
to the root source program for editing purposes. If you type the ASM command, the
assembler automatically restores before starting the assembly.

If an assembly aborts due to an error in a source line, you may correct the source
line, SAVE the module on the appropriate file, and type ASM to restart the assembly.

VALue

The VAL command will evaluate any legal operand expression., and print the value in
hexadecimal. It may be used to quickly convert decimal numbers to hexadecimal, to
determine the ASCII code for a character or to find the value of a label from the
last assembled program.

 EXAMPLE:

 VAL 'T
 $0054 00084
 OK.
 VAL 3493 + $3493
 $4238 16952
 OK.
 VAL START + S12
 $4200 16896
 OK.

--16-

DOS commands:

LOAD and SAVE

These commands are used to store your source files onto Disk or Tape in the internal
compressed form. This saves disk space and speed.

EXAMPLE: LOAd "D:GAME1.TXT" or SAVE "D:MISC.SRC"

BLOad and BSAve commands:

These commands are used to load and save BINARY files to disk.

NOTE: BLOad and BSAve function in the same manner as the L and K options in Atari DOS
II.

EXAMPLE: BLOad "D:GAME.OBJ".
 (This will load the binary file called GAME.OBJ into memory
at the address where it was saved.)

 BLOad "D:GAME.OBJ",$2000
 (this will load GAME.OBJ starting at HEX 2000, not at the address
where i t was saved.)

EXAMPLE: BSAve "D:GAME.OBJ",$2000,$4000
 (This saves a binary file called GAME.OBJ from Hex location $2000 to
$4000.

NOTE: the $ always must precede a hexadecimal number.
SYMASSEMBLER assumes a decimal number if the S sign is not present.

--17-

ENTer

This command allows you to enter ASCII text directly from tape or disk. It functions
like the ENTER command in Atari BASIC. You can use this command to ENTER Atari
assembler source files and then convert them to SYNASSEMBLER format.

 EXAMPLE: ENTer "D:ATARIFIL.SRC" or ENTer"C:".

TYPe

The TYPE command is used to save your source to any device in full ASCII format.

 EXAMPLE: TYPe "D:MYSOURCE.TXT"
 (This comand saves the full ASCII source under
 the MYSOLRCE.TXT file, to disk drive 1)
 TYPe "P:" ... sends the source file to the printer.

DIRectory

The directory command is used to examine the contents of your
diskettes.

 EXAMPLE: DIR by itself will show you the catalog for disk drive 1
 DIR "D:*.OBJ" will show anything in the catalog on drive 1 with
an OBJ extender.
 DIR "D2:*.TXT" will show anything in the catalog on drive 2 with an
OBJ extender.

-18-

DOS

The DOS command jumps from SYNASSEMBLER into the resident DOS in your system.

OUTput

The OUTput command is used to redirect the output of SYNASSEMBLER to another device;
eg. printer, disk, screen etc.

EXAMPLE: OUT "P:"

After changing the output you may use the ASM command to send assembled listings to
the device specified. To cancel the redirection simply type OUTput without a
filespec.

EXAMPLE: OUTput.

--19-

SYNAPSE MONITOR

The SYNAPSE monitor in SYNASSEMBLER allows you to examine, change, move, and verify
memory. You may read and write to disk and cassette, dis-assemble machine-language
programs; execute programs; perform hexadecimal arithmetic; read and write sectors
directly to and from disk; and monitor program execution for debugging purposes.

MONITOR COMMANDS

DISPLAY MEMORY: adrs1.adrs2 [RETURN]
This command allows you to display the memory from address1 to address2.

 EXAMPLE: 2000.4000 and [RETURN]

CHANGE MEMORY: adrs;data data

In order to change data at a particular address enter the address (in HEX of course),
and then a semi-colon(;) after which you may enter as much data as you wish making
sure that each byte is separated by exactly one space.

 EXAMPLE: 2000;4C 00 9D

--20-

After having entered an address, you may just use a semi-colon to indicate the next
location for your next data entry.

 EXAMPLE: 2000;4C
 ;00
 ;9D

This example has the same effect as the previous example.

DIS-ASSEMBLING MEMORY: adrsL

This command allows you to dis-assemble 20 instructions starting at the specified
address. By typing L L again the next 20 instructions will be dis-assembled.

ADDITION AND SUBTRACTION [HEX): data+data or data-data

You may add or subtract data (in HEX) simply by entering data and pressing [RETURN].

MOVING MEMORY: adrs1<adrs2.adrs3M

You may easily move data from one part memory to another. You first specify the
address into which you wish to move, and then the range of memory that is to be
moved.

EXAMPLE: 2000<3FF0.4000M

VERIFY MEMORY: adrs1<adrs2.adrs3V

If you wish to compare two blocks of memory, you can easily do so by specifying the
starting address of the block you wish to compare and then the range that you wish it
compared to.

EXAMPLE: 2000<3FF0.4000V

--21-

DISK (READ and WRITE): adrs<sec1.sec2r (READ)
 adrs<sec1.sec2w (WRITE)

This unique feature of the ZYNAPSE monitor allows you to access the disk directly.
The first parameter is the starting address of the buffer in which you wish to store
the contents of the sec1 through sec2. Note:The READ and WRITE commands are
lowercase. (CAUTION: BE EXTREMELY CAREFUL WHEN ACCESSING THE DISK DIRECTLY. YOU CAN
EASILY OVERWRITE THE CONTENTS OF YOUR DISK.)

 EXAMPLE: 2000<1.4r (reads sector 1 through 4 into
 buffer starting at 2000)
 2000<1.4w (wites the contents of buffer
 starting at 2000 to sectors 1
 through 4.)

RESTORING NORMAL MODE: N

This command tells the assembler to restore the original screen color and tab stops
to the power-up specifications.

OTHER COMMANDS

These commands are mainly used for execution and debugging assembly language
programs.

EXECUTE

The G command is used to execute a program from the monitor, by typing the program
address and the G command.

[*] Ok.
4000G

This will execute a program at 4000

--22-

EXAMINE and MODIFY registers

The R command allows you to examine and modify the 6502 registers (A,X,Y,P,S).

[*] Ok.
R
A=05 X=10 Y=50 P=30 S=F7

They can now be modified with the ";" command

STEP and TRACE (see also DEBUGGING)

The S and T commands are for single stepping your assembly language program but the T
repeats the S command indefinitely. The S command will execute one instruction:

[*] Ok
4000S
4000: A9 03 LDA #$03
A=03 X=00 Y=00 P=90 S=F0

At this point you may modify the register.

The T command will do the same thing as the S command except it will just repeat it
forever. To get out of this mode, just tap the [BREAK] key.

QUIT

The Q command will return you to the assembler.

--23-

SOURCE PROGRAM FORMAT

Source programs are entered a line at a time, with a five digit line number
identifying each line. The line numbers may run from 00000 through 63999. Source
program line numbers are kept sorted in line-number order; the numbers are used for
editing purposes just as in BASIC. A blank must always follow the line number.
After the blank, there are four fields of information: the label, opcode, operand,
and comment fields. Adjacent fields must be separated by at least one blank.

Although the fields are not restricted to begin in any particular columns, it is
convenient to enter them in this way for neatness. Therefore tab stops are built in
to the SYNASSEMBLER at columns 9, 13, and 21.

LABEL FIELD:

May be left blank, or may contain a label of from one to 32 characters. The first
character of a label must be a letter; remaining characters may be either letters or
numbers. Labels are used to name places in your program to which you will branch, as
well as constants and variables.

The standard tab settings leave enough room for only 9 character labels; however, you
can go ahead and use 32 characters as long as there is at least one space between the
label and the opcode. If you like, you may type labels on a separate line, with the
opcode and the following fields left blank. The label will be defined as the current
value of the location counter. There are some examples of this in various listings
throughout the manuals and in the example source code on the disk.

--24-

OPCODE FIELD:

Contains a three-letter machine language mnemonic opcode, or assembler directive.
However, opcodes may begin in any column after at least one blank from a label or two
blanks from a line number.

OPERAND FIELD:

Usually contains an operand expression of some sort. Some of the 6502 instructions
have no written operand, such as NOP, BRK, DEX, and others. In these cases the
comment field may be started right after the opcode. Four of the opcodes (ROL, ROR,
ASL, and LSR) may be used both with and without an operand. If no operand is
present, you must type at least TWO blanks before a comment with these four opcodes.

COMMENT FIELD:

Comments are separated from the operand field by at least one blank. Actually,
comments may begin earlier or later on the line, just so at least one blank separates
them from the operand expression.

COMMENT LINES:

Full lines of comments may be entered by typing an asterisk
or a semi-colon (;) in the first column of the label field. This type of comment is
useful in separating various routines from each other, and labeling their contents.
It is analogous to the REM statement in BASIC.

--25-

DIRECTIVES

Twelve assembler directives are available through SYnASSEMBLER.

.AS (stores ASCII literals.)

.AT (stores ATASCII literals)

.BS [expression]. (RESERVE [expression] bytes at the current

.DA [expression] enter data

.EN ENd of sources optional

.EQ [expression] (EQuate labels)

.HS (define Hex data)

.LI OFF (Turn off the assembly listing.)

.LI ON (Turn on the assembly listing.)

.IN [filename] .(Include a source program the specified file.)

.OR [expression] Indicates the originating address of your assembled code.

.TA [expression] (Target Address)

.TF [filename] --Put the object program on the specified file.

--26-

ASCII STRING: .AS daaa...ad

The .AS directive stores the binary form of the ascii characters "aaa...a" in
sequential locations beginning at the current location. If a label is present, it is
defined as the address where the first character is stored. The string "aaa ... a"

may contain any number of printing ASCII characters. You indicate the beginning and
end of the string, by using any delimiter ("d" in the example), that you choose.

ASCII character codes are seven bit values. The .AS directive normally sets the high
order bit (8th), to zero. Some people like to use ascii codes with the high order
byte set to one, so SYNASSEMBLER includes an option for this.

.AS daaa....d sets the high order bits=0
.AS -daaa...d sets the high order bits=1

This syntax restricts the choice of the delimiter slightly, in that the delimiter can
be any printing character other than a space or a minus sign. Since the Atari
inverse characters are set with the high order bits to zero, you merely put the minus
sign before the string and you will get the characters in inverse mode.

ATASCII STRING: .AT daaa...ad

This is the same as .AS except that output is in ATARI ASCII.

BLOCK STORAGE: .BS exp

Reserves a block of <exp> bytes at the current location in the program. The
expression specifies the number of bytes to advance the location counter. If there
is a label, it assigned the value at the beginning of the block.

The address of the beginning of the block will be printed in the address column of
the assembly listing. If the object code is being stored directly into memory, no
bytes are stored for the .BS directive. However, if the object code is being written
on a file using the .TF directive, the .BS directive will write <exp> bytes on the
file. All the bytes written will have the value of $00.

--27-

DATAlabel .DA expression (two bytes, LSB first)
 .DA #expression (one byte, LSB of expression)
 .DA /expression (one byte, MSB of expression)

Creates a constant or variable in your program. The value of the expression as one
or two bytes, is stored at the current location. If a label is present, it is
defined as the address where the first byte of data is stored.

4000: 0A 00 64
4003: 00 E8 03
4006: 10 27 00020 DEC.NUM .DA 10,100,1000,10000
4008: 64 00030 VALUE .DA #100
4009: FB 00040 VAL2 .DA #-5
400A: FF 00050 VAL3 .DA #$FF

 --- Symbol table ----

4000: DEC.NLM
4009: VAL2
400A: VAL3
4008: VALUE

END OF PROGRAM .: .EN

This defines the end of the source program. You would normally make this the last
line, but you may place it earlier in order to assemble only a portion of the source
program. If no .EN is present anywhere in your program, the assembler will assume
you meant to put this the last line.

--28-

EQUATE............: label .EQ <expression>

Defines the label to have the value of the expression. If the expression is not
defined, an error message is printed (UNDEFINED LABEL), and the offending line is
listed out. If you neglect to use a label with an equate directive an error message
(UNDEFINED LABEL), is printed. In either case, the assembly is aborted so that you
can correct the error. All page zero references must be made before they are used or
all labels defined after that reference will be off by 1.

EXAMPLE

 00020 .OR $80
0080: 00030 NUM1 .BS 1
0081: 00040 NUM2 .BS 1
0082: 00050 TABLE1 .BS 1
00E6: 00060 ADR .BS 100
 00070 .OR $4000
 00080 * main program *

 --- Symbol table ---

00E6: ADR
0080: NUM1
0081: NUM2
0082: TABLE1

HEX STRING: label .HS hhh...h

Converts a string of hex digits (hhh...h) to binary, two digits per byte, and stores
them starting at the current location. If a label is present, it is defined as the
address where the first byte is stored. If you do not have an even number of
hexadecimal digits, the assembler aborts with an error message, (BAD ADDRESS), and
lists the offending line. NOTE: Unlike hexadecimal numbers used in the operand
expressions you must NOT use a dollar sign with the .HS directive.

--29-

LISTING CONTROL: .LI OFF and .LI ON

This pair of directives turns the assembly listing on and off. If .LI OFF is put at
the beginning of the source program, and no LI ON is used, no listing at all will be
produced. The program will assemble much faster without a listing, as most of the
time is consumed putting the characters on the screen, and scrolling the screen up.

If you put .LI OFF at the beginning of your source program and .LI ON at the end,
only the alphabetized symbol table will print.

You may also use this pair of directives to bracket any portion of the listing you
may wish to see or not see.

INCLUDE: - .IN [file name]

Causes the contents of the specified source file to be included in the assembly.

The program which is in the memory at the time the ASM command is typed is called the
"root" program. Only the root program may have .IN directives in it. If you attempt
to put .IN directives in an included program, the "NESTED INCLUDE FILE" error will
print.

When the .IN directive is processed the root program is temporarily "hidden" and the
included program is loaded. Assembly then continues through the included program.
When the end of the included program is reached, it is deleted from memory and the
root program is restored. Assembly then continues with the next line of the root
program.

--30-

The .IN directive is useful in assembling extremely large programs which cannot fit
in memory all at once. It is also useful for connecting a library of subroutines
with a main program.

The [filename] portion of the directive is in standard FILESPEC format.

00020 * START OF PROGRAM
00030 .OR $5000
00040 .IN "D:PART1"
00050 .IN "D:PAPT2"
00060 .IN "D:PART3"
00070 .EN

ORIGIN: .OR <expression>

This sets the program origin and the target address to the value of the expression.
Program orign, is the address at which the object program will be executed. Target
address is the address is the memory address at which the object program will be
stored during the assembly. The .OR directive sets both of these addresses to the
same value, which is the normal way of operating. If you do not use the .OR
directive the assembler will set both the program origin and the target address to
$4000. If the <expressions> is not defined during SYNASSEMBLERS pass 1 prior to it's
use in the .OR directive, an error message is printed and assembly is aborted. The
error message that appears is "UNDEFINED LABEL" and the offending line is listed for
easy editing.

--31-

TARGET ADDRESS: .TA <expression>

Sets the target address at which the object code will be stored during assembly. The
target address is distinct from the program origin (which is either set by the .OR
directive or default at $4000). The .OR directive directive as we have seen, sets
both the origin and target address. The .TA directive allows the added control of
setting only the target address. Object code is produced and ready to run at the
program origin, but is stored starting at the target address.

TARGET FILE: .TF Ifilenarml

Causes the object code generated to be stored an a binary file rather than in memory.
Only the code which follows the .TF directive will be stored on the file. Code will

be stored on the file until another .TF directive is encountered, or until a .TA or
.OR directive is encountered. The [filename] format is the standard ATARI filespec
format.

--32-

When you wish to assemble a program which will execute at an address normally
occuppied by the assembler ($9C00 through $C000) or an already resident source
program, you need to use the .TA and the .OR directives. Set the origin first, using
the .OR directive and then set the target address to a safe value using the .TA
directive. It is always safe to start the target area at $4000.

 00010 * SAMPLE PROGRAM TO ILLUSTRATE
 00020 * THE .TA DIRECTIVE
 00030 .OR $1000
 00040 .TA $4000
 1000: AD 0C 10 00050 MAIN LDA TEMP.A
 1003: AE 0D 10 00060 LDX TEMP.X
 1006: AC 0E 10 00070 LDY TBIP.Y
 1009: 4C 00 10 00080 JMP MAIN
 100C: 32 00090 TEMP.A .DA #50
 100D: 64 00100 TEMP.X .DA #100
 100E: 22 00110 TEMP.Y .DA #34
--- Symbol table ---
1000: MAIN
100C: TEMP.A
100D: TEMP.X
100E: TEMP.Y

As you can see in the example, the assembly language listing looks as though the
program was stored at $1000. However, the object code is actually stored at $4000,
which is the target address set in the .TA directive. If we disassemble memory
starting at $4000, we see:

--33-

Ok
MON
Zynapse monitor
[*] Ok
4000L

4000: AD 0C 10 LDA $100C
4003: AE 0D 10 LDX $100D
4006: AC 0E 10 LDY $100E
4009: 4C 00 10 JMP $1000
400C: 32 ???
400D: 64 ???
400E: 22 ???
400F: 00 BRK
4010: 00 BRK
4011: 00 BRK
4012: 00 BRK

After the assembly is complete, there are several ways to position the code in memory
where it really should be. You can save the object code on cassette or disk from its

current location and reload it at the correct location for execution. Be sure not to
reload it while executing the assembler or you may clobber it.

Another method is to enter the monitor and use the monitor move command (addr1
addr2.addr3M). This command will move the block of memory from addr2 through addr3
to the area beginning at addr1.

LABELS:

There are two types of labels used in SYNASSEMBLER: normal labels and local labels.

--34-

NORMAL LABELS:
The first character of a normal label must be a letter;
subsequent characters may letters, digits, or the period
character (".") The period is useful for making long labels readable. For example,
the subroutine used to read the next source line might be named
"read.next.source.line".

Tab stops are set up within the editor assuming that most of your labels will be 9
characters or less. However, since the assembler is relatively free-formatt you may
type any length label followed by a blank and the opcode, operand, and comment
fields. Or, if you wish, you may type the long label on a line all by itself. In
this form the label is assigned the current value of the location counter, just as if
you had appended ".EQ" to the line.

 01000 * SAMPLE PROGRAM WITH LONG LABELS
 01010 SOURCE.LINE.POINTER .EQ $13 AND $14
 01020 CHAR.POINTER .EQ $12
 0l030 *
 01040 READ.NEXT.CHAR.FROM.LINE
 01050 LDY CHAR.POINTER
 01060 LDA (SOURCE.LINE.POINTER),Y
 01070 INC SOURCE.LINE.POINTER
 01080 RTS

LOCAL LABELS:

SYNASSEMBLER introduces a new kind of label called "local labels". The main purpose
for the local labels is to make programs more readable by reducing the number of
label names you must invent. As a side effect, local labels save considerable space
in the symbol table during assembly; they only reqire two bytes each. The use of
local labels also encourages structured programming habits.

--35-

Local labels have a period as the first character followed by one or two digits. Any
label from .0 through .99 may be used.

The local label must be within a page of the normal label or an error will result.

Since each set of local labels is associated with a particular normal label, you may
reuse the same local label

Here is an example of three little routines in the same source program using normal
and local labels:

 01000 PRINT.MESSAGE

 01010 PHA SAVE A-REGISTER
 01020 .1 JSR PRINT.CHARACTER
 01030 INY
 01040 LDA MESSAGES,Y
 01050 BNE .1 =0 FOR END OF MESSAGE
 01060 PLA RESTORES A-REGISTER
 01070 RTS
 01080 *
 01090 GET.NEXT.CHARACTER
 01100 LDY CHAR.POINTER
 01110 LDA INPUT.BUFFER,Y
 01120 CMP #RETURN
 01130 BEQ .1 END OF LINE
 01140 INC CHAR.POINTER
 01150 .1 RTS
 0ll60 *
 01170 GET.NEXT.NONBLANK.CHAR
 0ll80 .1 JSR GET.NEXT.CHARACTER
 0ll90 BEQ .2 END OF LINE
 01200 CMP #BLANK
 01210 BEQ .1
 01220 .2 RTS

--36-

MEMORY USAGE

The SYNASSEMBLER program is about 8000 bytes long, and occupies $9C00 through $BC1F
in memory. The screen begins at $BC1F and goes through $BFFF, while the source
program begins at the top of DOS and goes to $9C00.

During source program entry or editing, memory usage is monitored so that the source
program does not grow so large as to overlap the symbol table. Overlapping will
cause the "MEMORY FULL" error. message to print. During assembly, memory required by
the symbol table is monitored to prevent the symbol table from overlapping the source
program. Overlapping will generate the "MEMORY FULL" error message and abort the
assembly.

In addition, memory usage by the object program is monitored, so that it will not
destroy the source program, DOS, the Operating System, and hardware. Therefore, if
the object program bytes are directed at any memory protected addresses the "MEMORY
PROTECT" error message will be printed and assembly.

OPERAND EXPRESSIONS

Operand expressions are written using terms and operators. The valid operators are +
and -. Terms may be decimal numbers, hexidecimal, labels, or an asterisk (*). The
first term in an expression may be preceded by a + or a - sign.

--37-
DECIMAL NUMBERS

Any number in the range from 0 through 65535, written in the normal way.

HEXIDECIMAL NUMBERS:

Any number in the range from $0 through $FFFF. Hexidecimal numbers are indicated by
a preceding dollar sign ($), and may have from one to four digits. Beware of leaving
out the dollar sign; the assembler may be quite satisfied to think of your
hexadecimal number as a decimal one if you omit the ($). In some cases even a number
with letters in it, such as 23AB, may be acceptable; it may be interpreted as decimal
23 and a comment "AB".

BINARY NUMBERS

Any number in the range from 00000000 to 11111111. Binary numbers are indicated by
the preceding percent (%) sign.

NUMBERS EXAMPLE:

Ok.
 00010 * A DECIMAL NUIBER
4000: F1 00020 NUM1 .DA #241
 00030 * A HEX NUMBER
4001: E3 00040 NUM2 .DA #$E3
 00050 * A BINARY NUMBER
4002: D6 00060 NUM3 .DA #%11010110
 00070 .EN
 --- Symbol table ---
4000: NUM1
4001: NUM2
4003: NUM3

LABELS:

One to nine characters; the first character must be a letter, while the others may be
either letters or digits. Labels must be

--38-

defined somewhere in the program if they are to be used in an expression. In some
cases they must be defined prior to use in expressions to prevent an undefined or
ambiguous location counter. For example, if the expression in the operand field of
an origin (".OR") directive is not defined prior to use, the assembler will not know
how to define any subsequent labels.

A problem can occur if you postpone the definition of page-zero variables until after
their use in operand expressions. If these labels are used with instructions which
could assume both absolute and zero-page address modes, a discrepancy in the location
count will occur between pass 1 and pass 2, of the assembler. This discrepancy
cannot be detected by the present design of the assembler, so make it a habit to
always define your page-zero variables at the beginning of your program.

ASTERISK [*]:

Stands for, the current value of the location counter. This is useful for storing
the length of a string as a constant in a program.

 080A- 0B 1070 QT .DA #QTSZ #BYTES IN MSG
 080B- 41 4E 59
 080E- 20 4D 45
 0811- 53 53 41
 0814- 47 45 1080 .AS /ANY MESSAGE/
 1090 QTSZ .EQ *-QT-1 # BYTES IN MSG
 0816- 00 00 1100 VARW .DA 0 2-BYTE VARIABLE
 0818- 00 1110 VARB .DA #0 1-BYTE VARIABLE

 1120 HERE .EQ *

It is considered VERY POOR programming practice to include branch instructions in
your program with operand expressions in the form "*-5" or "*+7". If you value your
sanity and time, avoid them like the plague! They breed bugs that can be very
difficult to find. Dont't be afraid to use another label or two, no matter how silly
the names might sound.

--39-

ADDRESSING MODES

The MOS Technology 6502 microprocessor- used in the ATARI has many great features;
one of the greatest is its variety of addressing modes. There are thirteen different
modes in allt though no single opcode can use every one of them. The chart in the
appendix shows which modes can be used with each opcode. But fir-stt here is a chart
showing an example of each mode and the way it is written in assembly language.

 MODE EXAMPLE

 lmplied DEX at least two
 Accumulator ROL blanks before
 Relative BNE expr comments begin
 Immediate LDA #expr
 LDA /expr
 Zero Page LDA expr
 Absolute LDA expr Assembler uses
 Zero Page,X LDA expr,X Zero Page form
 Absolute,X LDA expr,X if possible;
 Zero Page,Y LDA expr,Y if not, it uses
 Absolute,y LDA expr,Y Absolute form.
 (Zero Page,X) LDA (expr,X)
 (Zero Page),Y LDA (expr),Y
 (Absolute) JMP (expr)

For a full explanation of the modes and how to use them, I refer you to the MOS
Tecnology Hardware and Programming Manuals, as well as the other references mentioned
in the bibliography in Appendix IV.

--40-

SYNASSEMBLER has one syntactical addition. The immediate mode may be indicated by
either a pound sign (#) or a slash (/). The "#" means that the least significant
byte of the 16-bit expression value should be used.

The "/" means that the most significant byte should be used.

One use for this feature is in setting up the address of a subroutine or a buffer in
a pointer. (A pointer is a pair of bytes containing an address which "points" at a
subroutine or into a buffer.) For example:

 0080: 00010 ADR .EQ $80
 4000: A9 0D 00020 START LDA #SOUND
 4002: 85 80 00030 STA ADR
 4004: A9 40 00040 LDA/SOUND
 4006: 85 81 00050 STA ADR+1
 4008: A0 00 00060 LDY #0
 400A: B1 80 00070 LDA (ADR),Y

 400C: 00 00080 BRK
 400D: 10 20 50 00090 SOUND .HS 102050
 4010: 20 40 90 00100 .HS 204090

 --- Symbol table ---
 0080: ADR
 400D: SOUND
 4000: START
 400D: SOUND

Trying to comprehend and remember thirteen different addressing modes can be very
difficult therefore it is convenient to try to group them into categories. You may
wish to consider the following breakdown: implied mode, relative mode, and other
modes. "Other" modes now includes eleven modes, so you can break it down further:
accumulator, immediate, direct, and indirect. Each of direct and indirect modes can
be either indexed or not indexed, and either Zero page or Absolute. The following
outline will give you a better idea of what has been described:

--41-

 I. Implied
 II. Accumulator
III. Direct
 A. Not Indexed
 1. Zero Page
 2. Absolute
 B. Indexed by X-register
 1. Zero Paqe,X
 2. Absolute,X
 C. Indexed by Y-register
 1. Zero Page,Y
 2. Absolute,Y
 IV. Indirect
 A. Not Indexed - (Absolute)
 B. Indexed by X-register
 (Zero'Page,X)
 C. Indexed by Y-register
 (Zero Page),Y

IMPLIED MODE

In this mode, the address is implied by the nature of the instruction, the operand
field is left blank. All of the opcodes in this class are only one byte long. They
are:

 BRK DEX PHA RTS TAY
 CLC DEY PHP SEC TSX
 CLD INX PLA SED TXA
 CLI INY PLP SEI TXS
 CLV NOP RTI TAX TYA

--42-

RELATIVE MODE

This mode is used only by the conditional branch instructions. The expression is
converted to a signed offset from the location following the branch instruction. The
result must be in the range from -128 through +127 to be legal. All of these
instructions occupy two bytes. They are:

 BCC/BGE* BEQ BNE BVC
 BCS/BLT* BMI BPL BVS

* you may use either form for greater than/less than branches.

OTHER MODES

Usage of the other eleven modes is much more complex. The table in the appendix
shows which modes are defined for each of the remaining opcodes. These instructions
occupy one byte in the accumulator mode, two bytes in any zero page modes, and three
bytes in any of the absolute modes. They are:

 ADC AND ASL BIT CMP
 CPX CPY DEC EOR INC
 LDA LDX LDY LSR ORA
 ROL ROR SBC STA STY
 STX JMP JSR

You might notice especially that only four, opcodes are usable in the accumulator
mode (ASL, LSR, ROL, ROR); that only two opcodes use the "ZP,Y" mode (LDX and STX),
and that only one opcode uses the indirect absolute non-indexed mode (JMP).

--43-

EDITING FEATURES

Any time the cursor is at the beginning of a line, typing [TAB] will cause the next
line number to be generated. Immediately after loading, the "next line number" will
be 10. The number will be displayed as five digits and a trailing blank. The cursor
will be in a position for the first character of a label, or the asterisk for a
comment line, or a semi-colon.

The "next line number" is always the value of the previously entered line number plus
the current "increment". The increment is normally 10, but you can set it to any
reasonable value with the INCREMENT command.

If you type the [TAB] in any other position than the beginning of a line, it will
cause a "tab" to the next tab stop.

TAB STOPS

The standard tab stops have been changed to allow for a nine character label before
the opcode. Of course, you may use any length label from 1 to 32 characters followed
by a blank and an opcode; but the use of the tab stops make for nicer looking
programs. (Longer labels look nicer, if left on a line by themselves.)

CURSOR CONTROL

SYNASSMBLER allows continued use of the ATARI cursor controls by pressing the [CTRL]
key plus one of the four arrow keys on the right side of the keyboard. In addition,
SynAssembler makes full use of the ATARI screen editor.

--44-

DEBUGGING PROGRAMS

Each step ("S") command decodest displays and executes one instruction at a time, and
the trace ("T") command quickly steps through a program, stopping when a BRK
instruction is executed.

Each step command causes the monitor to execute the instruction in memory pointed to
by the program pointer. The instruction is displayed in its disassembled form, then
executed. The contents of the 6502's internal registers are displayed after the
instruction is executed. Then the program counter is bumped up to point to the next
instruction in the program.

Here's what happens when you list and then step through a sample program:

Ok.
MON
Zynapse monitor
[*] Ok.
4000L
4000: A9 05 LDA #$05
4002: 0A ASL
4003: 0A ASL
4004: 8D 00 20 STA $2000
4007: 00 BRK
4008: 00 BRK
 *
 *
 *
4015: 00 BRK
4016: 00 BRK
[*] Ok.

-45-

STEP EXAMPLE:

[*] Ok.
4000 S
4000: A9 05 LDA #$05
A=05 X=00 Y=00 P=30 S=FD
[*] Ok.
S
4002: 0A ASL
A=0A X=00 Y=00 P=30 S=FD
[*] Ok.
200
0200: 90
[*] Ok.
S
4003: 0A ASL
A=14 X=00 Y=00 P=30 S=FD
[*] Ok.
S
4004: 8D 00 20 STA
A=14 X=00 Y=00 P=30 S=FD
[*] Ok.
2000
2000: 14

[*] Ok.
S
4007: 00 BRK
4007: A=14 X=00 Y=00 P=30 S=FD
[*] OK.

--46-

TRACE EXAMPLE:

Ok.
MON
Zynapse monitor-
[*] Ok.
4000T
4000: A9 05 LDA #405
A=05 X=00 Y=00 P=30 S=FD
4002: 0A ASL
A=0A X=00 Y=00 P=30 S=FD
4003: 0A ASL
A=14 X=00 Y=00 P=30 S=FD
4004: 8D 00 20 STA #$2000
A=14 X=00 Y=00 P=30 S-FD
4007: 00 BRK
4007: A=14 X=00 Y=00 P=30 S=FD
[*] Ok.

EXAMINING AND CHANGING REGISTERS

The EXAMINE command is invoked by pressing "R" which tells the monitor to display the
contents of the five 6502 registers on the screen. To change these values, type the
semi-colon and the new values:

[*] Ok.
R
A=0A X=FF Y=D8 P=B0 S=F8
*;B0 02
R
A=B0 X=02 Y=D8 P=B0 S=F8

APPENDIX I

MONITOR TRICKS

There are few tricks that you can use in the ZYNAPSE monitor. These will generally
make your life easier and programming less of a chore.

All monitor commands may be put on a single line if you separate the commands with a
space.

EXAMPLE: D01F D01F D01F
This will display memory location D01F 3 times.

Some commands are only one letter long, so you needn't separate them with a space.

EXAMPLE: 2000LLLL
This will disassemble 80 instructions

Sometimes you may need to utilize certain commands repeatedly. You can do this by
typing the command many times, or type it once and tell the monitor to repeat it for
you.

EXAMPLE: N 2FC AD;0N
 This will display location 2FC until
 [BREAK] or [SYSTEM RESET) is pressed.

APPENDIX II

SYNASSEMBLER Memory Map

(assumes 48K memory)

0000-00EF : O.S. and Assembler zero page usage.

00F0-00FF : Free space

0100-01FF : 6502 hardware stack

0200-02FF : Operating System vector table

0300-03FF : IOCB vector table

0400-047F : DOS usage area

0480-04FF : Assembler usage

0500-05FF : Assembler input buffer

0600-06FF : Free space (if REPlace not used)

0700-1D00 : DOS II

1D00-9BFF : Free space for source, symbol table, and object code

9C00-BC1F : SYNASSEMBLER

BC20-BFFF : Screen display list and data

APPENDIX III

CONVERTING ATARI ASSEMBLER FILES

In order, to convert your ATARI Assembler/Editor files to SynAssembler format follow
these simple instructions:

.Read the ATARI editor/assembler files into the SynAssembler using the ENTer command.

.Save the file back to the disk using the SAVE command. This will store your file in
compacted format.

.Make the following changes to your source code:

1. Remove all references to "A". For examplet in the instruction LSR A, the "A"
should be removed, since SynAssembler assumes the "A" reference.

2. SynAssembler has no multiply or divides so these must be put in by long hand.

3. To get the Hi and Lo bytes make the following changes:

Atari Assembler
 LDA #PLACE/256 high byte
 LDA #PLACE&255 lo byte

SynAssembler
 LDA /PLACE high byte
 LDA #PLACE lo byte

4. All of the Atari directives must be changed to the SynAssembler equivalents.

Now that you have your file in SynAssembler format, you may use the local labels and
long 32 character labels.

APPENDIX IV

BIBLIOGRAPHY

Publishers have begun to release some good technical resource books for learning to
program the 6502 microprocessor.

The ATARI Assembler, Don Inman & Kurt Inman.RESTON Publishing Company, 1981.
Designed for the beginner to intermediated this book has 270 pages including many
illustrations, diagrams and examples.

6502 Software Design, Leo J. Scanlon. One of the Blacksburg Continuing Education
Series, published by Howard W. Sams & Co.,1980. 270 pages, paper, $10.50.

6502 Assembly Language Programming, Lance A. Leventhal. Osborne/McGraw Hill, Inc.,
1979, over 80 programming examples.

Programming and Interfacing the 6502, with Experiments, Marvin L. DeJong. One of the
Blacksburg Continuing Education Series, published by Howard W. Sams & Co., 198O. 414
pagest paperback.

6502 Software Gourmet Guide and Cookbook, Robert Findley. Scelbi Publications, 1979.
204 pages, paperback. Includes listings of conversion routines, search and sort
routines, and floating point routines.

6502 Games, Rodney Zaks, SYBEX. The third in the SYBEX series on programming the
6502. Includes listings of games in assembly language.

Practical Microcomputer, Programming: the 6502, W.J. Weller, Northern Technology
Books, 1980. 459 pages, includes a listing of a 6502 assembler and a debugging
package.

APPENDIX V

 ACCUI- IMMED- DIRECT INDIRECT
 ULATOR IATE INDEXED INDEXED

 blank #expr expr expr,X expr,Y (expr) (expr,X) (expr),Y
 /expr ZP/ABS ZP/ABS ZP/ABS
===
ADC -- 69 65/6D 75/7D --/79 -- 61 71
AND -- 29 25/2D 35/3D --/39 -- 21 31
ASL 0A -- 06/0E 16/1E --/-- -- -- --
BIT -- -- 24/2C --/-- --/-- -- -- --
CMP -- C9 C5/CD D5/DD --/D9 -- C1 D1
CPX -- E0 E4/EC --/-- --/-- -- -- --
CPY -- C0 C4/CC --/-- --/-- -- -- --
DEC -- -- C6/CE D6/DE --/-- -- -- --
EOR -- 49 45/4D 55/5D --/59 -- 41 51
INC -- -- E6/EE F6/FE --/-- -- -- --
LDA -- A9 A5/AD B5/BD --/B9 -- Al B1
LDX -- A2 A6/AE --/-- B6/BE -- -- --
LDY -- A0 A4/AC B4/BC --/-- -- -- --
LSR 4A -- 46/4E 56/5E --/-- -- -- --
ORA -- 09 05/0D 15/1D --/19 -- 01 11
ROL 2A -- 26/2E 36/3E --/-- -- -- --
ROR 6A -- 66/6E 76/7E --/-- -- -- --
SBC -- E9 E5/ED F5/FD --/F9 -- E1 F1
STA -- -- 85/8D 95/9D --/99 -- 01 91
STX -- -- 86/8E --/-- 96/-- -- -- --
STY -- -- 84/8C 94/-- --/-- -- -- --
===
JMP -- -- --/4C --/-- --/-- 6C -- --
JSR -- -- --/20 --/-- --/-- -- -- --

