MYDOS Version 4 User Guide
Revision 4.3A
for Atari Home Computers

Charles W. Marslett

WORDMARK Systems
2705 Pinewood Dr.
Garland, TX 75042

October 21, 1986

This information is disclosed for the personal, private use of customers
of WORDMARK Systems and their employees. WORDMARK Systems reserves
the right to make changes to this document and to the product
described at any time without further notice. The information in this
document is believed Lo be accurate and reliable. However, no
responsibility is assumed by WORDMARK Systems for its use; nor any
infringements to copyrights, patents or rights of any third parties
resulting from its use.

MYDOS Hardware Compatibity

The MYDOS 3 and 4 Disk Operating Systems are intended to work with
as many different hardware configurations as possible: either may be
used with any Atari 8 bit computer from the oldest 400 and 800 mode!s
(with the A Revision OS ROMs) to the current 65XE and 130XE models.

I have verified that the following perpheral hardware works with both
major versions of MYDOS:

Atari 810 Disk Drive

Atari 810 Disk Drive with Happy upgrade

Atari 1050 Disk Drive in single density mode

Percom RFD series Disk Drives

SWP Microcomputer Products ATR8000

SWP Microcomputer Products ATR8500

Indus GT Disk Drive (850 and Percom compatible modes)
Z-Tec Hard Disk Interface and Drive

Atari 850 serial/parallel interface
ICD P:R:Connection serial/parallel interface

Axlon RAMPower 128 Plus RAM upgrade for the 800
ICD Rambo XL 256K RAM upgrade for the 800XL
Newell Industries 256K RAM Upgrade for the 800XL
Magna Systems 512K RAM Upgrade for the 800

The following hardware has been reported to work properly with MYDOS:

Atari 1050 disk drives with the ICD USDoubler

Astra Big D (dual double sided disk drive)

Astra 2000 (dual single sided disk drive)

Amdek 3 1/2" systems (with and without 5 1/4" drives)
Indus GT Disk Drive (with new ROM) in all densities
Supra Corp. Winchester disk interfaces and systems
SWP Microcomputer Systems Hard Disk Subsystem

The following hardware or modifications are reported to not work
properly with MYDOS 3 and MYDOS 4:

Basic/XE with the Newell 256K Upgrade (prior to 4.2)

Basic/XE with the ICD Rambo 256K Upgrade (prior to 4.3)

Some Indus GT disk drives (perhaps early ones) do not
properly recognize diskette densities

Some Percom disk drives (probably the newest ones) do not
properly recognize diskette densities

The original public domain 256K RAM upgrade (since it uses a
32K page size) is incompatible with the MYDOS RAMdisk code

Many menu programs and programs with overlays that execute
subroutines within DOS 2.0, DOS 2.5 or SpartaDOS.

Summary of changes:
MYDOS Release 4.3A

October 23, 1986

This release of MYDOS, dated October 21, 1986, adds two new commands ('S’
to set the RAMdisk drive number and 'V’ to turn on and off Write-Verify). It
algo corrects a long standing problem that occurs if a directory is deleted
and includes new code to cycle through all active drives looking for
DUP.SYS. MYDOS 4.3 corrected two problems in the error handling code
Present in earlier versions and had improved manual coverage for several
newer features.

The new commands are subsets of the 'O’ command permitting the most
common changes to be made without reconfiguring the entire system.

The error in the delete code for directories caused the boot sectors and the
first file on the disk to be distroyed when the first file was written to the
disk after a directory had been deleted (the VTOC free sector bit map was
incorrectly updated when the directory was deleted).

The original code to load DUP.SYS ignored errors, now it cycles to the next
valid drive on the system if a wvalid DUP.SYS is not found. Until the
CRC/checksum code is added next year, this will cause real confusion if disks
with different versions of MYDOS (or Atari DOS) are in use at one time. This
permits DUP.SYS to be loaded from a floppy if the DUP.SYS on the hard disk
or RAMdisk is inadvertently deleted and you then attempt to go to MYDOS
from BASIC or whatever.

The documentation has been extended to cover RAMdisk usage and incorrect
information in the error descriptions and configuration command descriptions
have been corrected. A short chapter has been added to cover the operation
of the RAMdisk driver -- Now the short RAMdisk sequences supported are:

0 -- An Atari 130XE or compatible RAMdisk without
BASIC/XE or other XE programs
-- An Atari 130XE compatible with 192K for the
RAMdisk, the last 64K of which may be used
by BASIC/XE, using the Newell Industries
memory map
2 -- An Atari 130XE compatible with 192K for the
RAMdisk, using the ICD memory map (new) --
in 4.3A this is now BASIC/XE compatible
(a 128K RAMdisk and 64K for BASIC/XE)
5 -- An Axlon compatible RAMdisk of at least 40K

—

The next release (probably in the spring of 1987) will add a CRC check on
resident code to guard against errors that might occur after part of the
resident code is distroyed. It will also include permanent drivers for the
Atari 850 and ICD’s P:R:Connection. I may be able to add support for the
Atari 1030 and DOS 2.5’s extended file system (and I may not!).

Charles Marslett

aQZHmzqm
I. INTRODUCTION
ITI. SYSTEM REQUIREMENTS
III. MENU FUNCTIONS
IV. THE MENU COMMANDS
A. List a Directory or a Set of Files
B. Run the Cartridge
C. Copy a File or a Set of Files
D. Delete a File or Set of Files
E. Rename a File or Set of Files
F. Lock a File or Set of Files
G. Unlock a File or Set of Files
H. Write MYDOS 4 to a Disk
I. Initialize a Diskette
J. Duplicate a Diskette
K. Save Memory to Disk
L. Load Memory from a File
M. Run at Address
N. Load MEM.SAV from a File
O. System and Drive Configuration
P. Diskette Density Selection
Q. Create Additional Directories
R. Set the Default Directory
S. Set the RAMdisk Drive Number
V. Set Write Verity ON or OFF
V. FILE MANAGER FUNCTIONS PROVIDED THROUGH CIO
VI. CIO FUNCTION CODES PROVIDED BY MYDOS 4
Function code 3, OPEN
Function code 5, GET RECORD
Function code 7, GET CHARACTERS
Function code 9, PUT RECORD
Function code 11, PUT CHARACTERS
Function code 12, CLOSE A FILE
Function code 13, READ STATUS
Function code 32, RENAME A FILE
Function code 33, DELETE A FILE
Function code 34, MAKE DIRECTORY
Function code 35, LOCK FILE
Function code 36, UNLOCK FILE
Function code 37, POINT TO POSITION IN FILE
Function code 38, NOTE POSITION IN FILE
Function code 39, LOAD MEMORY
Function code 41, SET DEFAULT DIRECTORY
Function code 254, FORMAT A DISKETTE
VII. DISK STRUCTURES SUPPORTING MYDOS 4
VIII. MYDOS 4 MEMORY MAP
IX. CUSTOMIZING A SYSTEM DISK
Custom RAMdisk Configurations
Number of Files Open at Once
Controlling the Disk Drives Accessed by MYDOS
4
Selecting or Disabling Write-with-Verify
X. DISK DRIVE INTERFACE (via SIO)
XI. RAMDISK INTERFACE
XII. INITIAL INSTALLATION INSTRUCTIONS
XII. ERROR CODES AND THEIR SOURCES

WLWOOAII_I00 ;W N

24

MYDOS Version 4 User Guide

by Charles W. Marslett

I. INTRODUCTION

The disk operating system described in this manual is modeled after the
ATARI (trademark of ATARI Corp.) disk operating systems (DOS and DOS
2) and may be considered an extension of the very "user friendly"
concepts introduced with those two operating systems. The ATARI 810
disk drive and the ATARI 1050 disk drive are well supported by the
DOS 2 and DOS 2.5 operating systems, but those DOSs have very limited
provision for higher capacity double density disks.

II. SYSTEM REQUIREMENTS

MYDOS 4.3 is intended to function as nearly as possible like ATARI DOS
2. This means it occupies as little memory as possible, supports all the
system calls supported by DOS 2 and in most cases, uses exactly the
same parameters to the system calls. Most programs that can be copied
to a standard ATARI DOS 2 disk and run from that disk can also be run
from any MYDOS disk. The largest groups of programs that do not
work this way are those that access the disk through calls to entry
points inside the DOS file manager or "FMS". Programs that depend on
an exact screen menu or a precise format for the directory data will
also have difficulty running properly -- one common problem is for
programs to expect exactly 3 digits in the file size field and the free
sectors field of directories.

The hardware needed to run MYDOS 4.3 consists of at least one ATARI
DOS 2 compatible disk drive or equivalent and an ATARI 8-bit computer
(400, 800, 1200XL, 600XL, 800XL, 1450XLD, 65XE or 130XE). MYDOS 4 is
not compatible with the ATARI 16-bit computers. MYDOS 4 does not
support the DOS 2.5 enhanced density format, the DOS/XL Version 4
format or the SpartaDOS format, either.

In addition, if the dynamic density selection or capacities of other than
720 sectors per disk are to be used, the controller must provide the
extended 810 interface described in Section 10. This extended interface
was first used by the PERCOM dual density disk subsystems, and
extended to support 8" and double sided drives on the ATR8000
disk/printer/RS232 controller manufactured by SWP, Inc. Recently
support for large RAMdisks and hard disk drives have been added to
the group of supported devices by interpreting some of the fields
differently. Descriptions of the new interpretation to support most of
the hard disk and RAMdisk systems manufactured for the Atari 8-bit
computers.

Up to eight disk drives (or nine if the ninth is a RAMdisk) may be

accessed, but only one is required. The resident part of the operating
system supports all documented functions of the DOS 2 operating

page 2 Revision 4.3a

system, so MYDOS 4 supports most available software for the ATARI home
computers.

The memory available to a program is affected only by the number of
files to be open concurrently: each disk file that may be open at the
same time requires 256 bytes of buffer space. Memory requirements are
independent of the number of disk drives or the sector size and
density. The need for a 256 byte buffer for each concurrently open file
means that programs that keep large numbers of files open will have
less memory available than under DOS 2 and as a result some programs
(mostly older versions of compilers and language interpreters) will not
have enough memory to run. With three file buffers and no resident
drivers (such as for RS232 support), MYDOS 4 permits binary programs
to load as low as $1FO00.

MYDOS 4.3 also contains a very versatile RAMdisk driver than can be
configured to support most available memory expansion products for the
Atari 8-bit computers (the primary requirements are that the memory be
accessed through a 16K memory window from $4000 to $7FFF, and that
the mapping function be similar to that of either the Axlon or 130XE
extended memory).

III. MENU FUNCTIONS

The menu provided by MYDOS 4 identifies 20 common tasks that might
need to be done. Rather than having to write a utility program (only a
few lines of BASIC would perform most of the menu functions) or even
remember the name and format of a DOS command, these tasks can be
handled by entering a single letter. MYDOS 4 responds with a question
asking for the details of the operation (which file, what density, "are
you sure?" or whatever else it might need to know). After you enter the
remaining information, the function is performed and another prompt is
displayed.

You should notice two interesting things about the menu: the second
line on the screen identifies the disk drives present on the system and
what they appear to MYDOS 4 to be (single or double density, RAMdisk
or high capacity hard disk). The next line describes the current default
directory (that directory used when a disk is referenced by ’'D:’
(without a unit number after the ’D’). The second thing to notice is that
after commands fill the screen, the menu ’rolls’ off the top: some DOS
programs keep the menu, MYDOS 4 does not. This permits more
information to be shown on the screen when a long sequence of
commands is needed to perform a function or when a directory is being
listed or several files are being copied. To restore the menu to the
screen, just type RETURN and the initial screen is restored.

Some commands require further information to prevent accidental damage
to your disk files: the 'I’ command and the ’J’ command both require
confirmation (through an additional key entry) before distroying the
destination disk. To abort either operation without damaging any
existing disk files, simply press the RESET or BREAK keys. The 'D’, 'E’,

page 3 Revision 4.3a

'F’ and 'G commands (delete, rename, lock and unlock) all require an
explicit file specification. All other commands assume the drive
containing the default directory or all the files in the default directory
(depending on whether the command affects an entire drive or a set of
files).

Disk drive specifications and file specifications are made using the same
rules: if only a drive is specified and file data is required, all files on
that drive (or in the case of the 'K’ ’L’ and ’'N’ commands to save and
load programs, the first file on that drive) will be the assumed choice. A
drive is specified with a ’:’ (meaning the default drive), a number (with
or without a trailing ’:") or the capital letter 'D’ followed by an optional
number and a required . If you wish to specify the file or set of files
to be referenced, the drive format must include a ’:’ or it must be
omitted entirely -- DIl:Test.obj, 1:TEST.ASM, or D2TEST (really
D1:D2TEST) are valid file names, but d1:Test.obj or 1TEST.ASM are not.

The file name itself is either fully specified (referring to exactly one file
on the disk) or includes "wild card” characters (specifying a set of zero
or more files). A fully specified file name consists of one to eight
characters followed by a period (’.’) and zero to three additional
characters. The first character in the file name must be an upper or
lower case letter, an underscore (’_') or the characters '@ or ’'". The 'Y
is the ATARI diamond graphic. The remaining character may be in that
set or one of the digits 0-9. The "wild card" characters are the
characters 'X¥’ and ’'?’: the character ¥ or the sequence ’'%.” end either
the 8 character or the 3 character field in the file name and match all
possible characters. The character ’?’ matches any single file name
character.

In addition to the main directory (containing up to 64 files or
directories) each MYDOS 4 disk may also contain additional directories of
64 files each. If the main directory contained the directory file BAS and
the file GRAPHIC1 were in the directory file BAS, it could be referenced
with the filename, BAS:GRAPHICl. If instead, GRAPHIC1 were in the
directory GR.dir which in turn were in BAS, then the reference would
be to BAS:GR.dir:GRAPHIC1 (and so on with as many names as needed).
Because there is no limit to the number of directories on a disk (other
than the buffer size of programs using the directories and number of
available sectors on the disk), a single diskette can contain hundreds of
files if necessary.

Each directory is a 8 sector file to its parent directory. Thus it is
limited to 64 files or subdirectories exactly like the 8 sector root
directory.

If a disk directory includes the files TEST.ASM, TEST.OBJ, TEST.C,
TEST.ALM, TEASET.DOC, TRACE.FIL, and BETS.LST, the specification
"tx.x" will not match any file name (since "t" and "T" are not the same
letter to MYDOS 4). The specification "T*x" will match all but "BETS.LST"
(since the others all begin with the letter "T"). The specification
"?E??.%" will match the first four files and the last one (since the 8
character part of the file name must have no more than 4 characters in
it and the second character must be an "E"). The specification "¥?" will

page 4 Revision 4.3a

match only the file TEST.C (since it is the only file name with a single
character in the 3 character field). The specification "????E*x" will
match the files TEASET.DOC and TRACE.FIL and none of the others

(since the 8 character part of the file name must have at least 5
Characters and the fifth must be an "E").

Where more than one file name is asked for, the first may be omitted by
starting the response with a space or comma, and the last may be
omitted by ending the line with a comma (the space cannot be used here
since trailing spaces are ignored). If both file names are entered, they
may be separated with either a space or a comma. Some commands may
be modified using a letter following the character '/’ after the file name
(for example, 1/A or DI:TEST/A). The letter used (the modifier) generally
means the same thing if it is allowed. Invalid modifiers are always
ignored with no error indication. The modifier '/A’ causes the results to
be appended to the end of an existing file. This is applicable to 'C’
(copy) and ’A’ (directory) commands. The modifier ’/N’ causes the
destination disk formatting to be skipped (saving about a minute) when
used in the ’I’ (initialize) and 'J’ (duplicate disk) commands. It prevents
the questions asked before changing each file if it is used in the ’'D’
(delete), 'F’ (lock) and ’G’ (unlock) commands. (We bend the rule so
recently mentioned. In both cases, part of the function is skipped see?)

The /X’ command causes MYDOS 4 to pause at the end of each read or
write pass when copying data to allow you to change disks (permitting
you to copy from one disk to another with a single drive, even if that
drive appears to MYDOS 4 to be two drives). This option supports disk
drives that handle increased capacity by making a single diskette
appear to be on more than one drive at a time, as well as disk drives
that select density through the drive number (1-4 are single density, 5-
8 are double, for example, and drives 1 and 5 are the same physically).
This also allows the writing of a directory of one disk onto another as a
file (use the command ’A’ followed by the entry "1,1:DRVO0l1.dir/X") even
with only a single drive on the system. The ’'/X’ is assumed if only one
file name is entered in the copy command. This emulates the operation of
the ATARI DOS 2 ’0’ command which is not implemented in MYDOS 4.

To omit copying files with extensions beginning with 'S’, the '/S’
modifier can be appended to the either file specification in the 'C’
(copy) command: for example, the line "2/S,1" will copy all files not
matching the string *.S?? from drive 2 to drive 1.

IV. THE MENU COMMANDS
A. List a Directory or a Set of Files

The ’A’ command will list the files on a disk with their sizes, followed
by a line specifying the number of free sectors on the disk. If the line
starts with an 'X¥’, the file has been locked and may not be modified or
deleted without first being unlocked. A ’:’ before the file name marks
those files that are directories. These files cannot be read or written as
other files but only accessed as directories or deleted (if the directory

page 5 Revision 4.3a

is empty). File lengths and the number of free sectors are reported as 4
digit decimal numbers (most other Atari DOSs report the values as 3
digit numbers).

If the number of free sectors on a drive exceeds 9999, the free sector
line will contain a 5 digit number, and its length then will be the same
as the file data lines -- this may cause problems with some programs
that do not detect this line by examining the first character (a file line
if it is 0’ or ¥ and the free sector line if it is a digit). Also, if the
number of sectors in a file is greater than 9999, there will be no blank
between the 3 character file extension and the file size (so the line will
remain the same length). This was needed to retain the double column
directory list, AND DOES NOT APPLY IF A DESTINATION FILE NAME IS
SPECIFIED (or if the directory is read from BASIC or from a program).
Directories read from programs will get four or five digit file sizes and
some directory lines will be one character longer if any such huge files
exist on the disk.

No indication is made of the format of the file but ATARI DOS 1, ATARI
DOS 2, and MYDOS 4 are the only three supported file formats, and the
DOS 1 format will be dropped with the release of MYDOS 4.4. SpartaDOS,
DOS/A+ Version 4 or Atari DOS 2.5 files must be converted to single or
double density Atari DOS 2 files first in order to be usable from MYDOS
4.

See Section 6 for further directory information if you need more detail
than the ’A’ command provides.

This command will list the directory information to the screen if only
one file specification is entered. If two are entered, the second is taken
as a destination file and will be overwritten (or appended to if the /A
flag is used) with the directory data. The entry "1,P:" will write the
directory of the disk on drive 1 to the printer, for example.

To list the files in a subdirectory, enter the name of the directory
followed by a colon -- ’’. For example, "1:TEST:BAS:" will list the files
in the directory BAS which in turn is in the directory TEST in the main
directory of the diskette in drive 1.

B. Run the Cartridge

The ’B’ command returns control to the cartridge in the left (or only)
cartridge slot. If no cartridge is present, an error is displayed, and
nothing happens. No additional information is required, so if a cartridge
is present it is entered after loading MEM.SAV (if the last load command
were an 'N’) or immediately (if the last load command were an ’L’).

C. Copy a File or a Set of Files

page 6 Revision 4.3a

The 'C’ command is used to make another copy of one or more files of
data. The two file specifications asked for after entering the 'C’ identify
the source and the destination of the information being copied. Either
may be fully specified disk file or a device specification (such as E: P:
or one of the RS232 ports Rl: to R4:). The destination may be a set of
disk files (specified with ¥’ and ’?’s) only if the source specifies a file
name for the destination to use.

Copies from a file set to a device will implicitly write consecutive files
to the device (generating a set of listings or a collection of cassette
files for example). The source may be a set and the destination a single
disk file, but unless the ’/A’ modifier is specified to append each copied
file to the end of the previously copied files, only the last source file
will remain on the destination disk.

Note that the 'C’ command always uses the full memory space for a copy
operation (unlike ATARI DOS 2) and as a result, it will always invalidate
MEM.SAV if it is used. Any pending program cannot be restarted after a
'C’ or 'J’ command.

D. Delete a File or Set of Files

The ’'D’ command will remove all files that match the file specification
entered asking for confirmation before each one is removed. This
verification that the file is really the one to be removed can be disabled
for the duration of this single ’D’ command by adding the command
modifier '/N’ to the end of the file specification. In this case, all the
matching files will be removed ’quietly’ and the only further indication
you will see is the prompt for the next command.

E. Rename a File or Set of Files

The 'E’ command changes the name of the source file or files to match
the specification in the destination. Unlike other file specifications, the
destination specification must consist of a single file name: it must not
contain any directory names or a disk drive number. For example,
"D2:TEST:BASIC:NOTPNT.BAS,RANDIO.BAS" is the line entered to change
the name of a file in the directory "D2:TEST:BASIC". To change the name
of the directory "BASIC" to "ATBASIC", the line would look like
"D2:TEST:BASIC,ATBASIC".

F. Lock a File or Set of Files

The 'F’ command limits access to the files identified. The files may not
be deleted, renamed, added to or replaced without being first unlocked
with the 'G’ command.

page 7 Revision 1.3a

When a directory is listed, the files that have been locked using either
the 'F’ command or the ’lock’ or ’open locked’ functions provided
through CIO will be marked with an '¥’ in the first column. The files
that are locked may be read or loaded and executed normally, only
modification or removal are prohibited.

A locked directory cannot be deleted or renamed and no files may be
written to it. The files already in it can be modified freely, however.

Before each file is locked MYDOS asks you for confirmation with a
message: for the file TEST, the message would read "Lock TEST?". Any
answer but 'Y’ will result in the file not being locked. The confirmation
questions can be skipped by adding ’'/N’ to the end of the file
specification.

G. Unlock a File or Set of Files

The 'G’ command removes the limitations imposed on a file when it is
'locked’ using the '’ command. It does not alter the file or otherwise
change the way the file is accessed or used. The same function may be
performed in a program through the CIO function to ’unlock’ a file.

Before unlocking each file MYDOS asks for confirmation with a question
that must be answered with a 'Y’ if the file is to be unlocked;
otherwise, no action is taken and the next confirmation question is
asked.

To disable the confirmation questions, enter ’/N’ after the file
specification (see Section IV.D., on deleting files, for a more detailed
explanation).

H. Write MYDOS 4 to a Disk

The 'H’ command is used to make a rebootable copy of the current
MYDOS 4 files in memory. The two files created or rewritten are
'DOS.SYS’ and ’'DUP.SYS’. ’'DOS.SYS’ is an image of the permanently
resident file management routine accessed through CIO and the small
interface package that loads and saves MEM.SAV (an image of the part
of memory used to hold the nonresident part of MYDOS 4) and the
second part of MYDOS 4 itself (’DUP.SYS’). The file ’'DUP.SYS’ is a
standard load file containing the part of MYDOS 4 that is overwritten
when a program is loaded into memory. Neither of these files is
compatible with any other disk operating system either for the ATARI or
any other home computer. Both should be treated as a single object.
Never copy only DOS.SYS or only DUP.SYS to a disk without copying the
other.

The files written to the disk by the 'H’ command will reflect the

configuration parameters currently in memory, which may be different
from the ones active if the system were rebooted from the master disk

page 8 Revision 4.3a

again. (See Section IV.0., configuring the system, for the definition of
the configuration parameters provided in the system and how to specify
a modified configuration.)

I. Initialize a Diskette

The 'I"’ command is used to prepare a new disk for use with the MYDOS
4 operating system or to remove all the files on an old disk. The result
of the 'I’ command is a completely empty disk. The only data on the
diskette is that system provided information defining the space available
and the empty main directory.

If the drive number is followed by a '/N’ modifier, the diskette will not
be reformatted, but just ’erased’. If the disk is formatted with a
standard format, this is the recommended (fastest) way to remove all the
files on a diskette, rather than to use the ’'D’ command.

A diskette may also be formatted in the Atari 1050 enhanced format by
responding to the question "Enter Y (or A) to format drive 1:" with an
"A" (presuming the drive is a 1050 drive or compatible with the 1050).
The diskette is, however, not compatible with the diskettes similarly
created by DOS 2.5. The MYDOS diskette will not be readable by DOS
2.5 and DOS 2.5 enhanced disks can be only partially read by MYDOS.

J. Duplicate a Diskette

The ’'J’ command copies all the information from one diskette to another.
The information to be copied form the source diskette is determined by
specifying a starting and an ending sector number. If the range is not
stated, the sectors marked as in use in the DOS bit map (on the VTOC
sectors) are copied.

A sector range is specified by adding two numbers separated by a dash
and enclosed in parentheses to the end of the drive specification(s). For
example, to copy sectors 19 through 54 (tracks 1 through 3) from drive
1 to drive 4, without formatting the diskette in drive 4, the command
line could be "1,4/N(19-54)".

If the destination disk is already a properly formatted MYDOS 4
diskette, the ’/N’ modifier may be entered after either drive number to
skip the formatting of the destination drive. Otherwise, the destination
diskette will be formatted before the data from the source is copied to
it. That is, either "1/N,2" or "1,2/N" will copy from drive 1 to drive 2
without first formatting the diskette in drive 2. To copy the first two
tracks of a diskette without formatting the diskette being copied to, you
could enter "1/N,2(1-36)" or "1,2/N(1-36)".

If the VTOC is not constructed by Atari DOS 2, a version of MYDOS or

another compatible operating system the sector list must be specified. A
dual density Atari DOS 2.5 disk will not be copied correctly unless the

page 9 Revision 4.3a

destination is first formatted with the 'I’ command, then copied with the
')’ command and the command line "1,2/N(1-1040)".

To copy the entire disk from drive 1 to drive 2 after formatting the
diskette in drive 2 the command could be "1,2(1-720)". This is the
proper way to duplicate a non-MYDOS compatible diskette (of course,
copies of "copy protected"” disks will not normally be usable after
copying but data disks for some word processors and games can be
backed up this way).

The disk initialization done by the ’J’ command is done without error
checks: this means that a disk formatted with the 'J’ command may have
bad sectors (in the case of creating a backup disk, the disk will not be
written to later so if the disk is written with write verification any
error in the current contents will be discovered before modifying the
source disk).

If the disk is to be a working disk, a more reliable approach is to
initialize the disk (with the ’'I’ command) and then copy the data using
the 'J’ command and the ’/N’ modifier if no bad sectors are identified
(see the next paragraph). Since the 'C’ command reorganizes the data on
the disk, reducing sequential read time for all the files, it is a better
way to copy the contents of disks when the read time on a diskette is
more important than the copying time. If a diskette with DOS.SYS and
DUP.SYS is copied with the ’J’ command, the copy will also be bootable
but the 'H’ command must be used to reinstall a bootable DOS.SYS if the
diskette is built with the ’C’ command.

Note that the 'J’ command, like that in ATARI DOS 2, will use all of
available memory to duplicate the diskette: this means that if memory
has been saved using the MEM.SAV file, it will no longer be valid. Any
pending program cannot be restarted after a 'C’ or 'J’ command.

K. Save Memory to Disk

The 'K’ command builds a binary load file containing the data from the
memory area specified, as well as an initialization and a run vector
address if specified. If the file is not to execute an initialization routine
on being loaded, the initialization vector should be omitted. If it is not
to run on being loaded, the run vector should also be omitted (trailing
commas need not be typed in either).

If either vector is entered as zero, that is equivalent to omitting it.
Note that the starting and ending addresses of the program and both
entry points are all specified as hex numbers.

If MEM.SAV is active when the 'K’ command is entered, the MEM.SAV file
is loaded before writing the file to the disk.

L. Load Memory from a File

page 10 Revision 4.3a

The 'L’ command takes a binary load file from the disk and loads it into
memory. The load file’s initialization routine(s) will be executed and the
program started at its run address unless the '/N’ modifier is appended
to the file name given the 'L’ command.

This command disables the MEM.SAV file before loading and executing
the program.

M. Run at Address

The 'M’ command is used to enter a program loaded without a run
address, or to jump into any program without the need for a return
address. It may be used to restart the computer (loading the
AUTORUN.SYS file, if any) by specifying $E477 as the jump address.

If MEM.SAV is active (enabled with the ’'N’ command and not since
disabled by the 'L’ command), the contents of memory will be restored
from MEM.SAV before jumping to the address specified.

N. Load MEM.SAV from a File

The 'N’ command takes a binary load file from the disk and loads it into
memory. The load file’s initialization routine(s) will be executed and the
program started at its run address unless the ’/N’ modifier is appended
to the name of the file to be loaded. This command enables the MEM.SAV
file before loading (and executing) the program and when control is
returned to MYDOS the contents of memory will be saved back to
MEM.SAV.

If no file name is specified, the MEM.SAV file usage is enabled but no
program is loaded or run.

O. System and Drive Configuration

The ’0’ command is used to specify the type (at least logically) of the
disk drives on the ATARI computer and it is also used to specify
several system configuration parameters such as the number of file
buffers provided or whether a RAMdisk is present. The system
configuration functions, which are not specific to individual drives, are
selected by entering a RETURN when the prompt asking for a drive
number is displayed.

Either three or seven configuration parameters will be prompted for
during a system configuration: three if the RAMdisk (also referred to as
memory or virtual disks) is not to be used or seven if the MYDOS 4
RAMdisk handler is to be used.

If the answer to the third question is ’N’, the remaining four questions

having to do with the RAMdisk will be skipped. The following table
explains the significance of each prompt and its response.

page 11 Revision 4.3a

Verify WRITEs? N=do not write with verify, else do verify at
once (RETURN = 3)

RAM disk present? N=no RAM disk on the system (skips the
next 4 questions as well), else the
RAMdisk is enabled and the next 4
responses determine what kind it is

Size(K)? Size of the RAMdisk area in K (8 single
density sectors = 1K), this must be a
multiple of 16 (NI 256K upgrade=192 OR
128, AXLON=112, default or 130XE=64).

Control Address(HEX)? Address of the memory map control port: a
RETURN specifies $D301 for the 130XE.
For AXLON RAMPOWER 128, enter CFFF
here.

Page sequence? RETURN if using a standard Atari 130XE or
equivalent RAMdisk. Other standard
values are (1) for the Newell industries
upgrade, (2) for the RAMBO from ICD
(only if no extended RAM programs ar
being used: BASIC XE, SynCalc, etc), and
(5) for Axlon or compatible boards. The
most general response is to list the page
numbers to be used as 2 hex digits each,
separated by commas, and continuing if
necessary by ending the line with a
comma. The sequence is ended with a
"0" if the RAMdisk is 130XE compatible
and with a "FF" if it is Axlon compatible.

RAM disk drive no? Drive number used to access the RAMdisk
(RETURN for drive 9 or a drive number
1-9)

A RETURN does not retain the current value when responding to these
questions, it changes the setting to a generally acceptable default.

Also, a BREAK or RESET will not leave the configuration unchanged. If
the configuration process is aborted for any reason you should reboot
the computer or properly complete the configuration before doing
anything else with the computer.

If instead of a RETURN, a drive number or name had been specified
then that drive would be reconfigured. The first question identifies
whether the drive is to be included in system initialization (and thus be
available for later use). If a non-existent disk is included it does not
cause any problems with the system: it simply causes that disk to be
examined each time the system is booted (adding perhaps a second to
the time it takes to boot MYDOS 4).

page 12 Revision 4.3a

If the drive is excluded from the system, no further questions are
asked. Otherwise, the second question asks if the drive is configurable:
is it like the ATARI 810 drive (with a fixed configuration) or is it like
the PERCOM or ATR8000 drives. If the disk is not configurable it is
assumed to be a 720 sector, single or double density ATARI 810/815/1050
disk drive.

The third question is whether the drive is a high capacity drive (does
it use the modified configuration for non-floppy disks). Generally this
should be answered ’'N’ if the drive is a floppy disk drive and 'Y’
otherwise. If this question is answered 'Y’ the only remaining question
is the size (in sectors, from 256 to 65535, of the drive).

Drives up to 16 million bytes (Megabytes) capacity can used with MYDOS,
and larger drives can usually be partitioned to appear as two or more
drives of less than 16 million bytes capacity.

Drives excluded from the system can be dynamically added by
referencing them but they will always be treated as 5 1/4 inch 810
compatible drives (the default configuration).

If the first three answers are 'N’ (do not exclude the drive), 'Y’ (it is
configurable), and 'N’ (it is not a "smart" or high capacity drive), the
configuration is asked for: Is the drive double sided, how many tracks
are there on the each side of the disk, and at what speed can it move
the read/write head across the disk (what is its step rate).

The first question is answered with 'Y’ or 'N’ (Y’ meaning ’'yes’ it is a
double sided drive and diskettes formatted on it will be double sided).

The second question is answered with 35, 40, or 80 followed by a
RETURN if the disk drive is a 35 track, 40 track, or 80 track 5 1/4 inch
floppy drive and with 77 if the drive is a 77 track 8 inch drive. If you
have IBM PC/AT style high capacity disk drives (1.2Mb capacity) you
may use 77 of the 80 tracks in high capacity mode providing 1 Mb
capacity by selecting 77 tracks. No other numbers are accepted. The
answer to this question specifies both the type of drive (8 inch/high
capacity 5 1/4 inch, or standard 5 1/4 inch) as well as the number of
tracks per inch and total capacity of the drive. This answer is very
important to the operation of the drive.

The last answer is entered as a code: use the following table and the
drive specifications to determine the proper value.

Code value 8 inch rate 5 1/4 inch rate
0 3 ms/track 6 ms/track
1 6 ms/track 12 ms/track
2 10 ms/track 20 ms/track
3 15 ms/track 30 ms/track

P. Diskette Density Selection

page 13 Revision 4.3a

The density used for most MYDOS commands is determined by the data
written on the diskette and the operator need not worry about setting
it. The P’ command is provided to allow forcing the density setting for
the format ('I’) command and to permit setting the density for disk
drives and systems that do not automatically recognize the density of a
diskette when sector 1 is read (for example, some Percom and Indus GT
drives).

MYDOS commands that access a diskette will automatically select the
appropriate density, so the 'P’ command will have no effect on the drive
if any command accessing the drive configured with the 'P’ command is
executed before the format (’I’) command or if a program is run using
the 'B’, 'L’ or 'N’ commands.

MYDOS has an untested feature to support the Atari 1050 enhanced
density mode -- when formatting a diskette, answering "A" rather than
"Y" to the last prompt will cause MYDOS to issue an enhanced density
format command and will cause the disk sector map data to be written
so as to allow use of all 1040 sectors on the disk.

(Under normal operation, MYDOS does not need to know if the diskette it
is reading or writing is formatted as enhanced or standard density. The
diskette is just a 1040 sector single density diskette.)

Q. Create Additional Directories

When a diskette is formatted, an empty directory (the highest level or
root directory) is created. This directory is capable of holding up to 64
files or other directories. If additional directories are installed in this
directory, each of the additional directories can contain up to 64 files as
well. A directory is installed in an existing directory using the ’'Q’
command and responding to the question of what the directory name is
with the name of the new directory.

For example, if "TEST" and "BAS" are two directories in the root
directory of the diskette in drive 1, "1:TEST:COMM" or "1:BAS:COMM"
would create a new directory in "TEST" or "BAS" respectively.
"1:NEW:COMM" would not create a directory, however, if the directory
"NEW" does not already exist.

A ’Q’ command with the response "1:NEW" would create it, and a second
'Q’ command with the response "1:NEW:COMM" would then create the
nested directory.

Each directory takes up exactly 8 sectors and after it is created it may
only be referenced as a directory (followed by a '’ that is) or deleted.
And it may only be deleted if it is empty (if it has no files in it). A
directory may be emptied by using the ’D’ (delete) command and
specifying the files "¥x.x" or "x.x/N" to remove all the files in the
directory.

page 14 Revision 4.3a

You can most safely do this by specifying the full name of the
directory: for example,

D5:MSGBASE:SEPT1983:%.x/N

R. Set the Default Directory

The 'R’ command is used to select a directory to be used when a file is
referenced without the drive number: that is, when file names such as
"TEST1.BAS" or "D:NEWCODE" or even ":BIGFILE" are used, they are
assumed to be in the default directory. Programs run under MYDOS 14
can access the contents of the current default directory by using a file
name of the form "D:..." without a drive number explicitly entered.

The directory is set by inserting the diskette with that directory on it
into the desired drive, then entering the file name of the directory with
no trailing ’:’.

The program may also set the default directory by calling the CIO
Function code 41 (set directory) routine.

If the diskette in the drive containing the default directory is replaced,
or if the default directory on a diskette is deleted, the default should
be redefined. The one exception is if the default directory is the root
directory on a diskette: because only the root directory is at the same
location on all diskettes.

S. Set the RAMdisk Drive Number

The ’S’ command permits the drive number assigned to the RAMdisk to
be changed easily, without reentering the full system configuration,
using the 'O’ command. In response to the prompt, just enter the new
drive number and press the RETURN key.

V. Set Write Verify ON or OFF

The 'V’ command turns on or off verification (read back) of data written
to disk drives (other than the RAMdisk). MYDOS does not support a
true file data verification. The hardware verify function does, however,
insure that the data written can be read back an instant later.

This is much more reliable than no verification at all and it will catch
perhaps 80% of all failures to write the sector data properly to the disk

(drive speed problems and incorrectly seated diskettes will not be
caught).

V. FILE MANAGER FUNCTIONS PROVIDED THROUGH CIO

page 15 Revision 4.3a

MYDOS 4 supports all CIO calls supported by ATARI DOS 2, with
modifications to the OPEN (Function code 3) and the FORMAT (Function
code 254) functions.

Three additional CIO functions have been added: MAKE DIRECTORY
(Function code 34), SET DIRECTORY (Function code 41) and LOAD
MEMORY (Function code 39).

The OPEN function in ATARI DOS 2 does not use the data provided in
the AUX2 byte, but in MYDOS 4, when the AUX1 byte is 8 (the file is
opened for creation or replacement), the AUX2 byte contains three flags
that control the file format and whether it will be created locked or not.

If AUX2 bit 1 is set, the file will be written in the original ATARI DOS 1
format if the disk is single sided, single density; otherwise, it will be
ignored: the original format is not viable for 256 byte sectors or disks
with more than 1023 sectors.

If AUX2 bit 2 is set, the file will be written in MYDOS 4 format, and may
contain sectors beyond absolute sector 1023. Such a file may not (easily)
be read by programs not running with MYDOS. This is the only format
used with high capacity disks.

If AUX2 bit 5 is set, the file will be written with the 'LOCKED’ bit in the
directory set initially. This is provided for use by multi-tasking
functions (such as a print spooler, sequential file pre-reading function
or other enhancements one might want to make to the standard OS or
DOS provided functions).

The FORMAT function in ATARI DOS 2 does not provide for any
variations to the standard disk usage: in MYDOS 4, the contents of the
AUX1 and AUX2 bytes are used to specify the number of sectors on the
disk being formatted and whether the disk needs to be formatted by the
controller as well as needing directory initialization. Bit 7 of AUX1 is set
to skip the physical formatting of the entire disk surface when it is not
required, and bits 6-0 of AUX1 and all of AUX2 can be used to specify
the number of sectors on the disk being created (if all 15 bits are zero,
the disk is assumed to be the size defined by the drive configuration).

This permits formatting a single sided diskette on a double sided drive,
for example.

To load (and possibly execute) a program file, MYDOS provides the CIO
function 39 call. From BASIC you can load and execute a program by
executing the line:

XIO 39, #3, 4, 0, "D:MYPROG.OBJ"
Any inactive IOCB can be used, and if AUX1=4 both the INIT and the
RUN entries will be executed. If AUX1=5, the RUN entry will be executed,
if AUX1=6, the INIT entry will be executed, and if AUX1=7, the file will
be loaded without executing either entry point.

Any other values of AUX1 will return an error code and do nothing.

page 16 Revision 4.3a

Another XIO call, XIO 34, has been added to create a directory. When a
directory is created, the name used must not match any existing file or
directory in its parent (for example if the directory to be created is
named "DI1:TEST:", there can be no other directory in the main directory
named "TEST" nor a file named "TEST" there.

From BASIC the XIO 34 call is "XIO 34, #iocb, 8, 0, dirname" where
"iocb" is any available unit number, and "dirname" is the name of the
new directory (it does not end with a trailing ':’).

The final function added to those provided by ATARI DOS 2 is XIO 41, to
define the default directory. The default directory is that which will be
searched for a file if the file name begins with "D:". In ATARI DOS 2
this default directory is always "DI1:" but in MYDOS 4, the default
directory can be any root or subordinate directory on any disk in the
system.

The buffer address passed CIO in the XIO 41 call is the address of a
string that contains the default directory name, terminated with either
an end of line ($9B) or a null byte ($00).

The directory will be accessed before returning to the calling program
so that an error in specifying the directory will be reported as early as
possible.

VI. CIO FUNCTION CODES PROVIDED BY MYDOS 4

Function code 3, OPEN

The open function uses the buffer address to point to an ATASCI string
terminated with a character not 0-9, A-Z, a-z, :, ?, or ¥. This string is
the name of the file to be accessed or created. A good terminator for
this string is either a null ($00) or an end of line ($9B).

The AUX1 byte defines the usage of the file: 4 for input, 6 for directory
data reading, 8 for creating/replacing output, 9 for creating/appending
output and 12 for input/update (without extension).

The AUX2 byte is used when a file is replaced or created, and contains
three significant bits, bit 1 set causes a DOS I format file to be created
if the diskette is single sided, single density (otherwise, it is ignored).
Bit 2 set causes the MYDOS format to be used even if the diskette is a
40 track single sided diskette. And bit 6 set results in the file being
LOCKed initially without and additional CIO call.

For input, update or directory access AUX2 is ignored, and the length
is always ignored. In normal use, AUX2 is set to zero emulating ATARI
DOS 2 usage.

MYDOS 4 also does not leave partially full sectors when appending to a
file. This has two effects on programs which open files in append mode:

page 17 Revision 4.3a

the open will fail if the file cannot be appended to rather than the close
(as in ATARI DOS), and the file size will not change if a file appended
to is copied to another disk (in ATARI DOS it may grow smaller).

MYDOS 4.3, unlike earlier versions, will be forced to reread the entire
file when closing it if more than one file at a time is opened in append
mode.

Function code 5, GET RECORD

The get record function reads a line of data into a buffer, the buffer
being defined by its starting address and length. The line is defined as
the data bytes in the file up to an end of line character ($9B) or until
the buffer is full, whichever occurs first. The line is also terminated if
the end of the file is read. All record I/0 is buffered in MYDOS so
record transfers are necessarily slower than unbuffered I/0.

No other fields of the IOCB are referenced or needed. Note that the
ATARI ROM OS supports single byte I/0 through the accumulator if the
buffer length is set to 0. In this case, GET RECORD and GET
CHARACTERS function exactly the same way.

Function code 7, GET CHARACTERS

The get characters function reads a fixed number of bytes from a file
into a buffer, the buffer being defined by its address and length (two
16-bit number in the IOCB). The only case where the buffer is not
always filled is if the end of the file is read.

As is the case with get record calls, a single byte may be read into the
accumulator by setting the length field to zero. A get character CIO call
will be perform unbuffered I/0 if the buffer is longer than 256 bytes
(ATARI DOS 2 sets a similar threshold at 128 bytes). For this reason a
single long input is considerably faster than several short ones.

Only the buffer address and length in the IOCB are used by the get
characters function.

Function code 9, PUT RECORD

The put record command will write a single line to an output file, the
line defined the starting address of the buffer and either the length of
the buffer if no end of line ($9B) bytes are encountered, or the first
end of line byte. Only the buffer address and length in the IOCB are
used in this command.

page 18 Revision 4.3a

Function code 11, PUT CHARACTERS

The put characters command will write the contents of a buffer defined
by its address and length (in the IOCB), to a file opened for output.
The entire buffer is always written to the file unless the write is to an
output/update file and the end of the file is reached or the write is to
an output/append or create file and the last sector on the disk has
already been allocated. Only the buffer address and length fields in the
IOCB are used when the put character function is called.

Function code 12, CLOSE A FILE

To terminate use of a file (and for an output file, to write the
incomplete buffer to the disk) the IOCB used to access the file should
be closed. This is done by setting the function code in the IOCB to 12
and calling CIO. The close function does not use any of the data in the
IOCB for any purpose whatsoever.

Function code 13, READ STATUS

The read status command is issued to an unopened IOCB, with the
buffer address that of a file name string. If the file is not present that
error condition is returned, if it is locked, that error condition is
returned; otherwise, a normal completion code is returned. Only the
function code and the buffer address in the IOCB are needed.

Function code 32, RENAME A FILE

The rename function is passed a character string (pointed to by the
buffer address in the IOCB), and the first part of the string is a file
name string identifying the file or files to be renamed. Following a
single invalid character (one invalid in the file name, that is) a simple
file name must also be present: this second file name cannot include any
drive or directory names.

An example, using a comma as the invalid character, is
D2:TEST:PGMS:A.OUT,ZCPY

which will change the string needed to access the file
"D2:TEST:PGMS:A.OUT" to "D2:TEST:PGMS:ZCPY" -- Note that only the last
file name (if subdirectories are used) can be changed, to change "PGMS"
to "MLPROGS", the buffer must contain "D2:TEST:PGMS,MLPROGS" and the
rename will also change the full names of all files in "D2:TEST:PGMS" (to
belabor the obvious).

Wild card characters should appear only in the part of the file name
following the last ’:’ and their effect is best described by an example.

page 19 Revision 4.3a

The string "D2:TEST:*.x,x,XYZ" will rename all the files in the TEST
directory, making each file’s extension ".XYZ".

If the directory had the files "ATEST.BAS", "LOG", and "REPORT.XYZ" in
it, the result would be a directory with "ATEST.XYZ", "LOG.XYZ" and
"REPORT.XYZ" in it.

Function code 33, DELETE A FILE

The delete function removes any files that match the file name string
pointed to by the buffer address in the IOCB. Files locked will not be
deleted, so must be unlocked before being removed, and directories that
are not empty (that have a file, even an empty file, in them) cannot be
deleted. If either case is attempted, the corresponding error code is
returned. Otherwise, the files are removed and their data areas are
returned to the free space on the disk.

Like other Atari DOSs, in MYDOS files removed cannot be (easily)
recovered after being deleted. This is unlike some other operating
systems that preserve deleted files for as long as practical before
overwriting them.

Function code 34, MAKE DIRECTORY

The make directory function will create a new subdirectory on a disk (it
is not used to create the first directory, that is the "root directory"
identified by the drive specification "D1:", for example). It is called
through CIO by storing the address of the new directory’s name in the
IOCB buffer address and setting up AUX1 and AUX2 as for an open call
(see Function code 3), normally AUX1=8 and AUX2=0.

This function has no effect on the current default directory, and if it is
desired to make the newly created directory the default one, the
program must make a set directory call (Function code 41) following the
make directory call (the order is very important, because the default
directory cannot be set to a nonexistent directory).

Function code 35, LOCK FILE

A file can be "locked" so that it may not be modified or deleted
inadvertently by calling CIO with the lock function. The buffer address
is used to point to a file name string that identifies the files on the
disk to be locked. The only file modification that can be performed on a
locked file is to unlock it.

The lock function can be requested for a file already locked, and it will

return no error (unlike other file modification calls to CIO), but the
status of the file will not have been changed either.

page 20 Revision 4.3a

Function code 36, UNLOCK FILE

The unlock function is identical to the lock function except that is
reenables the modification or deletion of an unlocked file. A file that is
not locked can be unlocked with no error returned and no change in
the file’s status.

Function code 37, POINT TO POSITION IN FILE

The point function is passed the 3-byte disk address to be positioned to
in the twelfth through fourteenth bytes of the IOCB. On return, the
next byte read from that IOCB will be the one that was read or written
next after the corresponding note function was executed. A point call to
CIO can only be made if the file can be used for input: that is, if it is
opened for input or update processing. The first two bytes of the disk
address are a sector number (in low byte/high byte format) and the
third is the byte within the sector.

If a file is being appended to (opened with AUX1=9), a point function
call made before closing the file may return an unexpected error (this
cannot happen with the note function, however).

A problem can occur if the file being pointed to is in the last half of a
16 Megabyte disk: Atari BASICs do not allow sector number to be
greater than 32767. A solution is to use the following six line substitute
for the POINT statement (with attention paid to the fact the the two AUX
bytes must match the two used to open the file):

OPEN #K,AUX1,AUX2,"D5:BIGFILE"
NOTE #K,SECTOR,POSITION

HIGHBYTE = INT(SECTOR/256)
LOWBYTE = SECTOR - HIGHBYTE*256
POKE 844+16%K,LOWBYTE

POKE 845+16*K,HIGHBYTE

POKE 846+16%K,POSITION

XIO 37,#K,AUX1,AUX2,""

Function code 38, NOTE POSITION IN FILE

The note function returns in the twelfth through fourteenth bytes of
the IOCB a 3-byte disk address that may be used at a later time to
reposition the file using the point function. The note function can be
used on files open for input, output, update or appending.

The three bytes returned are the low byte of the sector address, the

high byte of the sector address, and the byte within the sector in that
order.

page 21 Revision 4.3a

Function code 39, LOAD MEMORY

The load memory function takes a file formatted in the ATARI DOS 2
executable program format (generated by the "K" command, by the
assembler/editor cartridge, by AMAC or MAC65, or by any of several
compilers for the ATARI computers) and loads its contents into the
computer’s memory as specified in the file.

No offset control is provided and no part of memory is protected from
the loading process. The initialization and execution addresses (if any)
can be individually enabled and disabled, however, to permit loading and
patching a program then writing it back to the disk for normal use.

To load a program into memory, the address of the file name string is

stored into the buffer address and a value of 4, 5, 6 or 7 is stored into
the AUX1 field.

If AUX1 is 4, both the initialization routines and the run address are
executed after closing the IOCB used but before returning to the calling
program. If AUX1 is 5, the initialization routines are disabled, but the
program will be run. If AUX1 is 6, the initialization routines will be
run, but the program execute address will be loaded and ignored. If
AUX1 is 7, the text of the program will be loaded into memory, but no
other activity will be performed.

Function code 41, SET DEFAULT DIRECTORY

The set directory command will use the contents of the buffer as a file
name and open the specified file, determining if that file is a wvalid
directory. If so, it will become the new default directory. That is, file
names of the form "D:..." will be assumed to be in the default directory
(which may be on any disk in the system and may be either the root
directory of that disk or a subdirectory).

Only the buffer address and the function code are significant when
setting the default directory.

Function code 254, FORMAT A DISKETTE

The format function uses the contents of the buffer pointed to by the
buffer address to identify the drive containing the diskette to be
formatted. If both AUX1 and AUX2 are zero, the disk is formatted
according to the capacity data in the system control table defined using
the 'O’ command. If AUX2 bit 7 is set to 1, the format operation is
skipped and an empty file system is written to the diskette. (This
assumes the disk is preformatted.)

The remaining 15 bits of AUX1 and AUX2 are used as a 15 bit number to

specify the number of sectors available on the disk (permitting the use
of the last few sectors of a disk outside the file system if desired).

page 22 Revision 4.3a

VII. DISK STRUCTURES SUPPORTING MYDOS 4

MYDOS 4 uses the first three sectors of a disk to hold some disk
information and the initial boot program if the drive contains DOS.SYS
and DUP.SYS.

Sector $168 (and sectors $167, $166, $165, etc., if the disk is formatted
as a higher capacity disk not compatible with ATARI DOS 2) is used to
hold a bit map of available sectors and several flag bytes identifying
the default format of files on the disk.

Sectors $169 through $170 contain main disk directory data, identifying
the files on the disk, their sizes and their starting sector number.

Note that this usage, when the diskette is a 719 sector volume declared
to be DOS 2 compatible, is in fact exactly the same as ATARI DOS 2
would make of the disk. The default single sided format differs only in
that sector 720 is not left out of the file system in MYDOS but is used
to provide 708 free sectors in an empty diskette rather than 707.

The changes made when the high capacity format is chosen are to
allocate enough sectors before sector $168 to assign a bit for each
sector that may be allocated for a file or for use by the system. The
high capacity disk directory may be read by ATARI DOS 2, but the data
in the files can only be accessed if it falls in the first 1023 sectors of
the disk and then only if the file number checking code in DOS 2 is
disabled.

This format and MYDOS 4 support accessing disks of up to 65,535
sectors of 256 bytes each (approximately 16 Mbytes).

Compatibility with Atari DOSs is further reduced if subdirectories are
used: to ATARI DOS 2.0, the subdirectories will appear to be simple files
with unreadable contents. The subdirectory’s files will not be accessible
and the subdirectory can be damaged if it is written to (even by
appending). For this reason disks sold to the general public, exchanged
with friends, and so forth, should not contain subdirectories unless
there is reason to require that the disk be used with MYDOS.

A further problem with exchanging diskettes is that there are many
different formats are used by vendors of double sided disk systems for
the ATARI. For this reason, double sided disks not only require both
computers use MYDOS, but also require that they use the same disk
system (PERCOM, SWP, Astra, Supra or whatever).

VIII. MYDOS 4 MEMORY MAP

The MYDOS 4.3 disk operating system occupies the area from $0700 to
$1EEE at all times, and when the menu is active, it also occupies the
area from $1EEE to $40FF. In addition, the first 16 bytes of the floating
point workspace ($D4 - $E3) are used by MYDOS 4 at that time. Unlike

page 23 Revision 4.3a

ATARI DOS 2, MYDOS 4 utility program (DUP.SYS) also calls the floating
point ROM entry points.

The nonresident part of MYDOS 4.3 starts loading at $26EE, reserving
the area from $1EEE to $26EE for disk buffers and drivers. Allocating
three disk buffers leaves exactly 2048 bytes for resident drivers that
will not be overwritten by the nonresident portion of DOS (contained in
DUP.SYS).

IX. CUSTOMIZING A SYSTEM DISK

Custom RAMdisk Configurations

The RAMdisk driver included in MYDOS 4.3 is configured automatically
for the Atari 130XE computer and uses its banked 64K bank of memory
for the RAMdisk providing 499 free (single density, 128 byte) sectors.
The 'O’ command provides an easy way to alter the operation of the
RAMdisk driver for other common banked memory systems. Most for the
800XL and 130XE use the same mapping address (the PORTB pins of the
PIA chip in the computer). A 128K RAMdisk can be used in an Atari
130XE using the last unused pin of that port with no tradeoff (selecting
the 64K bank is done with bit 6 of the byte written). If you have such
a system, enter a '2’ for the page sequence, and return for the others.

If, instead of adding one or two rows of 64K memory chips, the
enhancement replaces the entire memory of the computer with a single
bank of 256K memory chips, then the banked memory is a total of 192K
and 4 bits of the port must be used to select the memory bank. Often
the bits used are bits 0 and 1 (as in the 130XE) along with bit 6 (as in
the expansion above) and bit 5 (used in the 130XE to control banking
screen memory). Programs that bank screen memory (a very odd
proposition because of the difficulty of obtaining a useful sharing of the
banked memory page bits between the screen memory and the program)
will not work with this enhancement.

This is the approach used in the Newell Industries 256K upgrade for the
Atari 800XL.

If the enhancement is done externally or to an Atari 800 (with its
internal expansion slots), a new dedicated register may be used to map
the 16K pages. The Axlon RAMPOWER 128 card for the Atari 800 works
this way. In such a system, the pages are selected by writing a page
number to the mapping address and no sharing of the 8 bit byte is
necessary. The address of the mapping register is entered explicitly
and page sequence 'S5’ is a proper sequence.

The page sequence tables coded into MYDOS 4.3 are actually one 64 byte

sequence table with 3 posible permutations of the first 16 entries. A
one digit sequence number specifies one of the following sequences:

page 24 Revision 1.3a

Seq. No. Page Values OR Value

0 E3, E7, EB, EF, C3, C7, CB, CF,

83, 87, 8B, 8F, A3, A7, AB, AF 00
1 c3, C7, CB, CF, 83, 87, 8B, 8F,

E3, E7, EB, EF, A3, A7, AB, AF 00
2 A3, A7, AB, AF, C3, C7, CB, CF,

E3, E7, DB, DF, 83, 87, 8B, 8F 00
3or 4 00, 01, 02, 03, 04, 05, 06, 07,

08, 09, 0A, OB, 0C, 0D, OE, OF FF

As an example, you want to use BASIC/XE and you want to use pages
E3, E7, EB, and EF from BASIC in the extended mode and pages 83, 87,
8B, 8F, C3, C7, CB and CF as a 128K RAMdisk. Selecting 128 as the
RAMdisk size and entering either of the following lines --

1
or
€3,C17,CB,CF,83,87,8B,8F,0

sill configure the RAMdisk to use only that part of the banked memory
not used by BASIC/XE.

The file RAMBOOT.AUT, the Atari AMAC assembler source code for which
is in the file RAMBOOT.MAC, is an AUTORUN.SYS file that simulates the
operation of Atari DOS 2.5 and its RAMdisk.

It "formats" the RAMdisk and copies DUP.SYS to it, then it sets the
RAMdisk unit number and the unit used to access the DUP.SYS and
MEM.SAV files to the unit selected for the RAMdisk.

By modifying the code in the source file and creating a modified
AUTORUN.SYS file, the drive used to save MEM.SAV and fetch DUP.SYS
can be modified, other files than just DUP.SYS can be copied to the
RAMdisk when the system is booted or any other operation could be
performed that you find useful.

Number of Files Open at Once

The number of files that may be simultaneously open is set with the
same byte as in ATARI DOS 2: location $0709 (decimal 1801). This byte
contains a number from 0 to 16 setting the number of disk files that
may be open at the same time. Normally it is set to 3, the smallest
number that supports all the functions in the MYDOS 4 menu.
Specifically, a copy from one disk file to another requires three open
disk files. The value in the distributed version of MYDOS 4 is three, to
permit more or fewer files, use the "O" command followed by a RETURN.

To permanently change the maximum number of files, use the 'H’
command to write a modified MYDOS 4 system to a disk.

page 25 Revision 4.3a

Each file that may be open at one time requires the allocation of a 256
byte buffer so setting this value to 7 (instead of 3) will cause MYDOS 4
to be 1024 bytes longer than before and the programs loaded must
begin no lower than $226C (instead of $1E6C). In corresponding fashion,
by setting the value to 1, a BBS program can be loaded in with 512
bytes of additional memory if only one disk file is ever open at one time
(commonly true of bulletin board programs).

Controlling the Disk Drives Accessed by MYDOS 4

Like ATARI DOS 2, MYDOS 4 automatically identifies the disk drives that
are present when booted up initially and any time it is reinitialized
(some programs do this on exiting to the DOS and it is always done if
the RESET key is pressed. MYDOS 4 is distributed with drives 1 and 2
configured, all others are omitted in order to speed up the booting
process. To modify the maximum configuration MYDOS 4 will use, invoke
the '0’ command for each drive to be added to (or removed from) the
system. Pressing the RESET key will then use this value to redefine the
system. To permanently change the maximum drive configuration, use the
'H’ command, writing a new copy of MYDOS 4 back to the system disk.

Selecting or Disabling Write-with-Verify

MYDOS 4 is distributed with all data written to the disk read back to
verify that it was not only written to the diskette correctly, but that
there was not a problem (dust, a scratch in the oxide coating, or some
other problem that may have arisen since the diskette was formatted)
that prevented the data from being read back from the diskette. If the
programs being run have no long term value (games for example, often
write daily high scores to the disk, and loss of such data might result
in a few screams or moans, but so does waiting for a slow update of the
scores after each game!).

The byte at location $0779 (1913 decimal) controls all write operations to
the disk. If the value 'poked’ into it is $57 (87 decimal), than all writes
will be read back to verify the action was successful. If the value
'poked’ into $0779 is $50 (80 decimal) then writes will be assumed
successful, and will be performed in about one third the usual time.
Note that this address is not the same as in MYDOS 4.0 and 4.1 (where
it was $0770 or 1904 decimal).

This byte is defined, along with the count of the number of buffers to
be allocated when the file manager is initialized, whenever the 'O’
command is invoked with no drive specified (only a RETURN is entered
in response to the drive number query). To permanently alter it,
rewrite MYDOS back to the disk using the 'H’ command after changing
it.

The overhead associated with handling large RAMdisks and hard disks
result in MYDOS 4 being somewhat slower than MYDOS 3 (and Atari DOS
2) when writing to the disk whether verify is enabled or not. The
timing of disk I/O to permit maximum transfer speed is very critical and

page 26 Revision 4.3a

MYDOS 4 is about 0.0015 seconds (per sector transfered) slower than
MYDOS 3 (which takes about 0.1 seconds). With the standard sector
interleave used by most Atari compatible drives, this adds another 0.2
seconds to each write operation.

X. DISK DRIVE INTERFACE (via SIO)

The physical disk drives and diskettes are external to the ATARI home
computers and the ones supported by MYDOS 4 are normally attached to
the "serial interface connector”" on the right side or back of the
computer.

High capacity or "hard" disks may also be connected to the parallel port
of 800XL and 130XE computers. The software in the operating system (OS
ROMs) to access the devices attached to either connector is call the
"serial 1/0 driver" or SIO for short.

The MYDOS 4 disk operating system uses this lower level driver to pass
all commands and information to and from the physical disk drive.
Several commands were defined by ATARI to communicate with the 810
disk drive and most vendors of high performance disk systems for the
Atari have adopted a slightly extended version of this set of commands.
MYDOS 4 will operate in a limited fashion with any disk system that
supports the entire original 810 set, but the full set of commands is
required to support all the functions.

An additional function necessary to perform automatic density selection
is that the drive automatically identify the density of a diskette
inserted in it if the first operation is a read of sector 1 (this is
necessary if the drive is to boot either a double or single density
diskette).

The minimum set of disk drive functions to support MYDOS 4 (or ATARI
DOS 2 for that matter) are:

Device Unit Command Direction Byte Ct. Aux. Bytes Function
$31 Drive# $21 From Drive 128/256 1 to 720 FORMAT DISK
$31 Drive# $50 To Drive 128/256 1 to 720 WRITE(no vfy)
$31 Drive# $52 From Drive 128/256 1 to 720 READ

$31 Drive# $53 From Drive 4 1 to 720 READ STATUS
$31 Drive# $57 To Drive 128/256 1 to 720 WRITE(verify)

The byte count is always 128 for a small sector drive, and is 128 for
the first three sectors (1, 2, and 3) of a large sector drive. All other
sectors on a large sector drive are 256 bytes long. Standard double
density diskettes have the large or 256-byte sectors and all others use
the 128-byte sector size.

The FORMAT function is never called with a sector number not in the

range of 4 to 720. It expects 128 bytes from a small sector drive and
256 bytes from a large sector (or double density) drive.

page 27 Revision 4.3a

The first byte returned by the READ STATUS command is expected to
indicate the sector size -- if bit 5 is a 1 (bit 7 is the sign bit) then the
sectors are large (256 bytes), otherwise, they are small (128 bytes).

The auxiliary bytes are treated as an address to a sector on the
diskette, and range from 1 to 720 (when in DOS 2 compatible mode) or
from 1 to 65,535 (when accessing large capacity disk drives).

The additional functions used to configure disk drives dynamically are:

Device Unit Command Direction Byte Ct. Aux. Bytes Function
$31 Drive# $4E From Drive 12 1 to 720 READ CFG.
$31 Drive# $4F To Drive 12 1 to 720 WRITE CFG.

These commands are used to configure the drives identified as
configurable when the computer is booted: if there is a possibility that
a drive does not support these functions, it should be defined as not
configurable (such as Atari and Indus drives). These commands also
support the 'P’ command, permitting reconfiguration of a disk drive on
demand: to format a diskette, for example. (To format a disk on an
Indus drive, issue the 'P’ command, manually change the density on the
drive, then issue the 'I’ command).

The individual bytes transferred by these commands are defined as
follows:

byte 0: Tracks per side (40 for a standard disk drive)

byte 1: Disk Drive Step Rate (as defined by Western Digital)
byte 2: Sectors/Track -- high byte (usually 0)

byte 3: Sectors/Track -- low byte(18 for standard diskettes)
byte 4: Side Code (0=single sided, 1=double sided)

byte 5: Disk Type Code --

bit 2: O=single density, 1=double density

bit 1: 0=5 1/4 inch diskette, 1=8 inch diskette drive
byte 6: High byte of Bytes/Sector (0 for ATARI 810 compatible)
byte 7 Low byte of Bytes/Sector (128 for ATARI 810)
byte 8: Translation control

bit 7: 1=40 trk. disk I/O on an 80 trk. drive

bit 6: Always 1 (to indicate drive present)

bit 1: 1=Handle sectors 1, 2, and 3 as full size sectors

bit 0: 1=Sectors number 0-17 (for example) not 1-18
bytes 9-11 are not used by MYDOS (see the drive documentation as

to how they are to be set —- usually zeroes)

MYDOS 4 (unlike earlier versions of MYDOS) always issues a read
configuration command before writing the configuration to the drive and
the contents of bytes 9-11 are written exactly as they were previously
read (so they will be unchanged).

An additional change in the usage of this command occurs when a high
capacity drive (hard disk) is configured. The configuration data for
such a drive is very complex and is usually built into the drive
controller or written to a "magic" location on the disk.

page 28 Revision 4.3a

To support partitioning of very large drives (larger than 16 Megabytes)
MYDOS issues a write configuration command with the number of sectors
per track set to number of sectors on the disk (as defined in the 'O’
command) and the number of tracks set to 1.

All high capacity disks are large sector drives (using 256 byte sectors).
XI. RAMDISK INTERFACE

The driver built into MYDOS 4 is intended to eliminate most of the need
for a "driver" to use common RAMdisks. The required characteristics of
the hardware can be most easily described by explaining what is done
to access a "sector" of information in the extended RAM.

(1) the sector number is divided by 128, and the
remainder is then multiplied by 128 and added to
16384 to get the starting address of the sector in
memory (it will be between $4000 and $7F00).

(2) the quotient is used to index into a page table with
one entry for each 16K that can be mapped into the
memory area from $4000 to $7FFF.

(3) the value from the page table is "AND"ed with the
contents of the mapping register and rewritten to
the mapping register.

(4) the data is moved to(from) the area addressed
above from(to) the sector buffers at the high end
of MYDOS

(5) the mapping register is restored to its non-mapping
state by "OR"ing the restore value with the
mapping register and rewriting the result to the
mapping register.

Note that this design forces the RAMdisk to be single density and no
larger than 4 Megabytes (256 pages of 16384 bytes each).

As you can see, the parameters are the mapping register address
($CFFF for Axlon boards and $D301 for the Atari 130XE), the wvalue
"OR"ed into the register to reset the system back to normal (usually
$FF for the Axlon and $00 for the Atari 130XE), and the actual map
values. These values are determined by first identifying the bits in the
mapping register to be left unchanged and setting them to "1" in each
of the register values.

Second, the remaining bits are filled in with all the legal combinations of
mapping bits. The values for the Newell Industries 256K upgrade (which
uses the 130XE mapping, more or less) are given here as an example --
future versions of this board and other memory expansion products are
not necessarily going to use the same design.

Bitst 7 6 5 4 3 2 1 0

page 29 Revision 4.3a

b b b b e e e e e e

s BXa oy xd Sy ST First, set bits 7, 1 & 0
in all the mapping values

0 0 00 0O 1 1 These are the 12 (of 32)

0 00 O0 11 1

ORGIORSINNORS]T B!

0001111

1 00 0 0 1 1

100 01 11

IR0 ION SN0 S18]

100 1111

1100 0 1 1

il @ @ i il

1101011

1101111

Lastly, since the mapping register at $D301 can be read as well as
written, it can be left exactly as it was before we used it by "OR"ing
the initial value with zero (leaving it unchanged). The sequence is
then: 83, 87, 8B, 8F, C3, C7, CB, CF, E3, E7, EB, EF, 0.

XII. INITIAL INSTALLATION INSTRUCTIONS

The following checklist is a procedure to bring up MYDOS 4 on a new
hardware configuration. It should be done with an unmodified copy of
the MYDOS 4.3 distribution disk and care should be taken to perform
the steps in exactly the order specified.

HOW TO GET FROM THE DRIVEWAY TO THE FREEWAY:

1.

2.

Before turning on your computer and disk drive, make sure
that you do not have a cartridge installed in the computer.

Turn on the disk drive, and when it stops spinning, insert the
MYDOS master diskette. Close the door if it has one.

Turn on the computer: after several seconds, the MYDOS 4 menu
should appear on the screen. A prompt ’Select Item (RETURN

for menuj:’ will be displayed.

If you have a standard 2-drive system with single sided 40

track drives and either no RAMdisk or the standard Atari 130XE
memory configuration continue with step ’6’.

Configure each of your disk drives by entering the 0’ command
followed by the drive number, and answering the questions the
program asks you.X

If you need to run a program that requires more than 3 disk
files active at a time or you otherwise want alter one of the
default parameters, press the '0’ key followed by the RETURN
key and answer the system configuration questions. This is also

page 30 Revision 4.3a

NOTES:

8.

9.

10.

where the RAMdisk configuration needs to be entered if it is
not a standard 130XE RAMdisk or no RAMdisk exists in your
system. ¥Xxx

Now, insert a blank diskette in the disk drive and format it
with the 'I’ command (remove the write protect tab if the
diskette is write protected -- but first ask yourself why you
put it there in the first place!). If an error message is
displayed, insert another diskette, the first may be usable but
it is not a good choice for your system disk or system disk
backup.

Write the system files DOS.SYS and DUP.SYS to the newly
formatted diskette with the 'H’ command and skip to step ’10’ if
you do not have an ATARI 130XE computer or some other
RAMdisk usable with the MYDOS RAMdisk driver.

If you have an ATARI 130XE computer or have another kind of
RAMdisk and wish to use the MYDOS RAMdisk driver, copy
RAMBOOT3.AUT on the master diskette to AUTORUN.SYS on the
new diskette (use the 'C' command, and if you have only one
drive, enter the command line ’'RAMBOOT.AUT,AUTORUN.SYS/X’
when MYDOS asks for the file names).xx

This is now your primary system backup disk: place a write
protect tab on it, label it and use the 'J’ command to make as
many working boot disks as you need from it.

The RAMBOOT3 program will copy the files in a directory called
RAMDISK on your boot disk to the RAMdisk if such a directory
exists. To take advantage of this feature, use the ’'Q’ command to
create the directory and copy the files you want on the .RAMdisk to

it.

¥ —- The step rate is a cryptic code that ranges from 0 (fast) to 3
(very slow). Most drives will work with 0 or 1 but you may need to
experiment with it to find the best speed for your drives (and
power supplies).

%% -- The source file for the RAM disk boot is also included, if you feel
the urge, modify it perform other tasks -- RAMBOOT2 configures the
RAMdisk, formats it, moves it to drive 8, enables MEM.SAV and copies
DUP.SYS to it, RAMBOOT3 configures it, formats it, enables MEM.SAV,
copies DUP.SYS to it and also copies all the files in DI:RAMDISK: to
it. RAMBOOT3, the one distributed as AUTORUN.SYS must also be the
last AUTORUN file in AUTORUN.SYS since it uses all 3 disk buffers in
a standard MYDOS. An improved version without this limitation will
be release with the next version. If you recompile RAMBOOT2 and
use it, remember that when you string togather several AUTORUN
files, only the last will have its RUN address invoked.

¥Xxx —-- NEWELL INDUSTRIES 800XL UPGRADE --

page 31 Revision 4.3a

this RAMdisk can use page sequence 0 or page sequence 1. The
E3/E7/EB/EF pages can be reserved for BASIC/XE in extended mode
by setting the RAMdisk size to 128K and the sequence to 1. Enter
Sizez128 (or 192 if you will not be using BASIC/XE often), Control
address=D301, and Page sequencezl. In the second case this will
use the area also used by BASIC/XE, but it will access it only after
the first 128K are used up. By setting the size to 128K, BASIC/XE
and the RAMdisk are fully separate and cannot interfere with each

other.
xxxx -- AXLON RAMPOWER 128 for the Atari 800 computer --
MYDOS 4.0 comes configured for the Atari 130XE -- if you are

installing it on an 800 with an Axlon RAMPOWER board, you must
disable the 128K mode on the RAMPOWER board until you have
configured the MYDOS RAMdisk code by entering Sizez=112, Control
address=CFFF and Page sequence=5.

Then write the DOS back to a new diskette, copy AUTORUN.SYS to it,
switch the RAMPOWER board back to 128K and boot up the new
diskette.

page 32 Revision 4.3a

XII. ERROR CODES AND THEIR SOURCES

3 Last byte of file read, next read will return EOF (MYDOS)

128 Break Abort (OS ROMs)

129 10OCB already open (OS ROMs)

130 No such device defined in the system (0OS ROMs)

131 Write-only IOCB, cannot read (OS ROMs)

132 Invalid command (OS ROMs)

133 Device or File not open (OS ROMs)

134 Invalid IOCB reference (OS ROMs)

135 Read-only IOCB, cannot write (OS ROMs)

136 Attempt to read past end of file (MYDOS)

137 Truncated record (OS ROMs)

138 Device Timeout (OS ROMs)

139 Device NAK (serial bus failure, OS ROMs)

141 Cursor out of range for graphics mode (OS ROMs)

142 Data frame overrun (serial bus failure, OS ROMs)

143 Data frame checksum error (serial bus failure, OS ROMs)

144 Device I/0 error (in peripheral hardware, OS ROMs)

146 Function not provided by handler (OS ROMs)

147 Insufficient RAM for graphics mode selected (OS ROMs)

160 Invalid Unit/Drive Number, zero or greater than 9 (both MYDOS
and OS ROMs)

161 No sector buffer available, too many open files (MYDOS)

162 Disk full, cannot allocate space for output file (MYDOS)

163 Write protected or system error - if the disk is not write
protected, it should be copied to another disk immediately -- the
file system is corrupted (MYDOS)

164 File number in link does not match the file’s directory location
(MYDOS)

165 Invalid file name (MYDOS)

166 Byte not within file, invalid POINT request (MYDOS)

167 File locked, cannot be altered (MYDOS)

168 Invalid IOCB (MYDOS and OS ROMs)

169 Directory full, cannot create a 65-th entry in a directory --
entries may be used for ’lost’ as well as real files (MYDOS)

170 File not in directory, cannot be opened for input (MYDOS)

171 IOCB not open (MYDOS and OS ROMs)

172% File or directory of same name already exists in parent directory,
cannot create (MYDOS)

173 Bad diskette or drive, cannot format diskette (MYDOS)

174% Directory not in parent directory (MYDOS)

175% Directory not empty, cannot delete (MYDOS)

180% Invalid file structure for loading memory (MYDOS)

181% Invalid address range for loading memory, END<BEGIN (MYDOS)

X -- New error codes, not present or different in Atari DOS 2.

Most error codes are identical to those returned from ATARI DOS 2, the
differences result from the expanded capabilities of MYDOS 4.
Specifically, Error 164, indicating a file number mismatch, only occurs if
the file is written in DOS 2 or ATARI DOS I format. Errors 180 and 181
can only occur when XIO 39 is invoked to load a file, the ATARI DOS 2
equivalent function returned a code in the X-register. Errors 172 and

page 33 Revision 4.3a

175 apply to creating and deleting directories and have no ATARI DOS 2
equivalent. And Error 174 applies to accessing files in subdirectories,
so it also has no ATARI DOS 2 equivalent. Error code 173 serves the
same function as it did in ATARI DOS 2, but is returned more often (to
identify bad diskettes more reliably).

page 34 Revision 4.3a

