
..d

• reference manual for

MAC/6 5

a Macro Assembler and Editor program for
use with 6502-based computers built by

Atari, Incorporated

The programs, disks, and manuals comprising
MAC/65 are Copyright (c) 1982, 1983 by

Optimized Systems Software, Inc.
and

Stephen D. Lawrow

This manual is Copyright (c) 1982, 1984 by
Optimized Systems Software, Inc., of

1173-0 Saratoga Sunnyvale Rd.
San Jose, California, 95129
Telephone (408) 446-3099

Pev 1.2P

All rights reserved. 	Reproduction or translation of
any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without

the permission of the copyright owner is unlawful.

TABLE OF CONTENTS

Introduction
Start Up

' 	Warm Start
Syntax

•

1
2
2
3

Chapter 1 -- The Editor 5
1.1 General Editor Usage 5
1.2 TEXT Mode 6
1.3 EDIT Mode •

Chapter 2 -- Editor Commands 9
2.1 ASH 	Assemble 10
2.2 BLOAD 	Binary Load 12
2.3 BSAVE 	Binary Save 12
2.4 BYE. 13 •
2.5 DDT 	Use DDT Debug Program 13
2.6 DEL 	Delete lines 14
2.7 DOS 	exit to DOS 14
2.8 ENTER 	Enter an ATASCII file 15
2.9 FIND 	Find a Text String 16
2,10 LIST 	List program in memory 17
2.11 LOAD 	Load a SAVEd program 18
2.12 LOMEM 	establish new LOMEH 18 •
2.13 NEW 	Clear All Text 19
2.14 NUM 	Automatic Line Numbering 19
2.15 PRINT 	(without line numbers) 20
2.16 REN 	Renumber lines 20
2.17 REP 	Replace Text String 21
2.18 SAVE 	Save MAC/65 Source 22
2.19 SIZE 	Ask About Memory Usage 22
2.20 TEXT 	Use TEXTMODE 23
2.21 ? 	Hex/Decimal Convert 23

CHAPTER 3 -- The Macro Assembler 25 .
3.1 Assembler Input 25
3.2 Instruction Format 26
3.3 Labels 27
3.4 Operands 27
3.5 Operators 28
3.6 Assembler Expressions 33
3.7 Operator Precedence 33
3.8 Numeric Constants 34
3.9 Strings 34

•••"\s,

PREFACE

MAC/65 is a logical upgrade from the OSS product EASMD
(Edit/ASseMble/Debug) which was itself an outgrowth of
the Atari Assembler/Editor cartridge. Users of either of
these latter two products will find that MAC/65 has a
very familiar 'feel'. Those who have never experienced
previous OSS products in this line should nevertheless
find MAC/65 to be an easy-to-use, powerful, and adaptable
programming environment. While speed was not necessarily
the primary goal in the production of this product, we
nevertheless feel .that the user will be hard pressed to
find a faster assembler system in any home computer
market. MAC/65 is an excellent match for the size and
features of the machines it is intended for.

MAC/65 was conceived by and completely executed by
Stephen D. Lawrow. The current version of MAC/65 is
only the latest in a series of increasingly more complex
and faster assemblers written by Mr. Lawrow following
the lead and style of EASMD. As a measure of our
confidence in this assembler, it is entrusted with
assembling itself, probably a more difficult task than
that to which most users will put it.

TRADEMARKS

The following trademarked names are used in various
places within this manual, and credit is hereby givens

DOS XL, BASIC XL, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Atari, Atari 400, Atari 800, Atari Home Computers, and
Atari 858 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

Chapter 4 -- Directives 35
. .

4.1 	‘'.. 	(and 	.ORG) 36 INTRODUCTION
4.2 	• 	(and .EOU) 37
4.3 	... 37
4.4 	.BYTE 	(and .SBYTE) 38 This manual assumes the user is familiar with 	assembly
4.5 	.CBYTE 39 language. 	It 	is 	not 	intended 	to 	teach 	assembly
4.6 	.DBYTE 40 language. 	This manual is 	a 	reference 	for 	commands.
4.7 	.DS 40 • statements, 	functions, and syntax conventions of MAC65
4.8 	.ELSE 41 It is alao assumed that the user is familiar 	with 	the
4.9 	.END 41 screen 	editor 	of the Atari computer. 	Consult Atari's
4.10 	•ENDIF 41 Reference Manuals if you 	are 	not 	familiar 	with 	the
4.11 	•ERROR 41 screen editor.
4.12 	.FLOAT 42
4.13 	.rF 43 If you need a tutorial level manual, we would recommend
4.14 	•INCLUDE 45 that 	you 	ask 	your 	local 	dealer 	or 	bookstore 	for
4.15 	.LOCAL 46 suggestions.
4.16 	.OPT 47
4.17 	.PAGE 49 Although we are hesitant to suggest ANY 	of 	the 	books
4.18 	.SBYTE 	(see also .BYTE) 49 currently 	available (because they do not address Atari
4.19 	.SET 50 Computers properly), two books that 	have 	worked 	well
4.20 	.TAB 51 for 	many 	of 	our 	customers are "Machine Language for
4.21 	.TITLE 51 Beginners" by Richard Mansfield 	from 	COMPUTE! 	books
4.22 	.WORD 51 and "Programming the 6502" by Rodney Enke.

Chapter 5 -- Macro Facility 	• 53 This 	manual 	is 	divided into two major sections. 	The
5.1 	.ENDM 53 c---- /--"N first 	two 	chapters 	cover 	the 	Editor 	commands 	and
5.2 	.MACRO 54 syntax, 	source line entry, and executing source program
5.3 	Macro Expansion, part 1 56 assembly. 	The 	next 	three 	chapters 	then 	cover
5.4 	Macro Parameters 57 instruction format, assembler directives, 	functions and
5.5 	Macro Expansion, part 2 59 expressions, Macros, and conditional assembly.
5.6 	Macro Strings 60
5.7 	Some Macro Hints 62 Note that DDT--the Dunion Debugging Tool--is 	described
5.8 	A Complex Macro Example 63 in a separate manual section, which follows this MAC/65

manual. . 	
• Chapter 6 -- Compatibility 67

6.1 	Atari's Cartridge 67 MAC65 	is 	a 	fast 	and 	powerful 	machine 	language
development tool. 	Programs larger than memory 	can 	be

Chapter 7 -- 65CO2 Instructions 69 assembled. 	14AC65 also contains directives specifically
7.1 	Major Added Addressing Mode 70 designed 	for 	screen format development. 	With MAC65's
7.2 	Variations on 6502 Instructions 71 line 	entry 	syntax 	feature, 	less 	time 	is 	spent
7.3 	New 65CO2 Instructions 72 re-assembling 	programs 	due to assembly syntax errors,

allowing more time for actual program development.
Chapter 8 -- Programming Techniques 77

8.1 	Memory Usage by MAC/65 and DDT 77 .
8.2 	Assembling With Offset! 	.SET 6 78
8.3 	Making MAC/65 Even Faster no

Appendix A -- System Equates Listing 01

Appendix 8 -- Sample Macro Listings 85

Appendix C -- Error Descriptions 95

:

START UP

Simply 	turn 	off the power to your computer and insert
your MAC/65 cartridge (in the left 	cartridge 	slot 	if
using an Atari 800 Computer).

SYNTAX

The 	following 	conventions 	are 	used 	in 	the 	syntax
descriptions 	in 	this 	manuals

If 	you 	are 	using a disk drive, insert an appropriate 1. Capital letters designate 	command's, 	instructions.
DOS boot disk (e.g., DOS XL or Atari DOS) into drive 	1 functions, etc., which must be entered exactly as shown
and be sure the drive's power is on. (e.g., 	ENTER, 	.INCLUDE, 	.NOT). 	(But see NOTE below.)

Turn 	on 	your 	computer. 	If 	you have a drive with a 2. Lower case letters specify items which may be used.
proper diskette inserted, 	DOS 	will 	boot. 	Depending The various types are as follows:
upon the version and kind of DOS you have, you may find
that 	you 	need 	to 	give 	a command to COS in order to
enter the MAC/65 cartridge. 	If so, enter the command.

Ino 	- Line number between 0-65535, 	inclusive.

You 	should 	be 	presented 	with 	MAC/65's 	name 	and hxnum 	- A 	hex number. 	It can be address or
copyright 	lines 	and an "EDIT" prompt. 	If not consult data. 	Hex numbers are treated as
your hardware and/or DOS manuals and try again. unsigned integers.

You are now ready to begin using MAC/65. dcnum 	- A positive number. 	Decimal numbers
are rounded to the nearest two byte
unsigned integer; 	3.5 	is
rounded to 4 and 100.1 to 	100.

WARM START exp 	- An assembler expression.

The user can exit to DOS 	XL 	by 	entering 	the 	MAC/65 string 	- A 	string 	of 	ASCII 	characters
command 	DOS 	(followed 	by 	[RETURN], 	of course). 	To enclosed by double quotes (eg.
return to KAC/65, the user can use the DOS 	XL 	command "THIS IS A STRING").
CAR [RETURN) (or menu command 'T').

strvar 	- A string representation. 	Can be a
Unless you have used certain extrinsic commands, DOS XL string, 	as above, or a string variable
will return to MAC/65 via a 'warm start" (i.e., without
clearing out any source lines in memory). 	Consult your

within 	a Macro 	call 	(eg. 	141).

DOS XL manual for details. filespec - A string of ASCII characters that
OR 	refers to a particular device. 	See

Generally, when using Atari DOS, MAC/65 works much like file 	device reference 	manual for more
any 	other 	cartridge. 	The 	MAC/65 "DOS" command will
exit to Atari DOS, and the Atari DOS "B" 	command 	will

specific explanation.

return 	to 	MAC/65. 	If 	you 	use a MEM.SAV file, your 3. Items in square brackets denote an optional part of
MAC/65 program should •tay intact. 	Be. your Atari 	DOS syntax 	(eg. 	C,Ino)). 	When 	an 	optional 	item 	is
manual for details, followed 	by (...) 	the item(s) may be repeated as many

times as needed.
Example: 	.WORD exp (,exp ...)

4. Items in parentheses indicate that any 	one 	of 	the
items may be used 	, 	eg. 	(,0) 	(,A).

NOTE: 	MAC65 	in 	EDIT 	mode 	is 	NOT 	case 	sensitive.
Inverse video characters are 	uninverted. 	Lower 	case
letters 	are 	converted 	to 	upper 	case. 	EXCEPTIONS:

, 	... 	' characters between double quotes, 	following 	a 	single
quote, 	or 	in the comment field of a MAC65 source line
will 	remain 	unchanged.Text 	entered 	in 	TEXT 	mode.
though, will not be changed.

/Th

CHAPTER Is THE EDITOR

The Editor allows the user to enter and edit MAC/6 5
source code or ordinary ASCII text files.

To the Editor, there is a real distinction between the
two types of files; so much so that there are actually
two modes accessible to the user, EDIT mode and
TEXTMODE. However, for either mode, source code/text
must begin with a line number between 0 and 65535
inclusive, followed by one space.

Examples 10 LABEL LDA 1$32
3020 This is valid in TEXT MODE

The first example would be valid in either EDIT or
TEXTMODE, while the second example would only be valid
in TEXTmODE.

The user chooses which mode he/she wishes to use for
editing by selecting NEW (which chooses the MAC/65 EDIT
mode) or TEXT (which allows generbl text entry). There
is more discussion of the impact of these two modes

/—■ 	below; but, first, there are several points in common
to the two modes.

1.1 GENERAL EDITOR USAGE

The source file is manipulated by Editor commands.
Since the Editor recognizes a command by the absence of
a line number, a line beginning with a line number is
assumed to be a valid source/text line. As such, it is
merged with, added to, or inserted into the source/text
lines already in memory in accordance with its line
number. An entered line which has the same line number
as one already in memory will replace the line in
memory.

page intentionally left blank--

•

rTh

,

--6

SPECIAL NOTE; If, upon entry, a source line contains a
syntax error and is so flagged by the Editor, the line
is entered into Editor memory anyway. This feature
allows raw ASCII text files (possibly from other
assemblers and posnibly containing one or several
syntax errors as far as MAC/65 is concerned) to be
ENTERed into the Editor without losing any lines. The

lote the lines with errors and then edit them

•

1.3 EDIT MODE

MAC/65 is nearly unique among assembler/editor systems
in that it allows the assembly language user to enter
source code and have it IMMEDIATELY checked for syntax
validity. of course, since assembly language syntax is
fairly flexible (especially when macros are allowable,
as they are with MAC/65), syntax checking will by no
means catch all errors in user source code. For
example, the existence of and validity of labels and/or

• zero page locations is not and can not be checked until
assembly time. However, we still feel that this syntax
checking will be a boon to the beginner and experienced
programmer alike.

Again, remember that source lines must begin with a
line number which must, in turn, be followed by one
space. Then, the second space utter the line number is
the label column. The label must start in this column.
The third space after the line number is the
instruction column. Instructions may either start in
at least the third column after the line number or at
least one space after the label. The operand may begin
anywhere after the instruction, and comments may begin
anywhere after the operand or instruction. Refer to
Assembler Section for specific instruction syntax.

As noted, the Editor syntax checks each source line at
entry. If the syntax of a line is in error, the Editor

• will list the line with a cursor turned on (i.e., by
using an inverse or blinking character) at the point of
error.

The source lines are tokenized and stored in memory,
starting at an address in low memory and building
towards high memory. The resultant tokenized file is
601 to 001 smaller than its ASCII counterpart, thus
allowing larger programs to be entered and edited in
memory.

Also, as a special case of the above, a source line can
be deleted from memory by entering its line number
only. (And also see DEL 'command for deleting a group
of lines.)

Any line that does not start with a line number is
assumed to be command line. The Editor will examine
the line to determine what function is to be performed.
If the line is a valid command, the Editor will execute
the command. The Editor will prompt the user each time
a command has been executed or terminated by printings

EDIT for syntax (MAC/65 source) mode
TEXTMODE for text mode

. 	.
The cursor will appear on the following line. 	Since
some commands may take a while to execute, the prompt
signals the user that more input is allowed. The user
can terminate a command before completion by hitting
the break key (escape key on Apple II).

And one last point: If the line is neither a source
line or a valid command. The Editor will print;

WHAT?

1.2 TEXT MODE

The Editor supports a text mode. The text mode is
entered with the command TEXT. This mode will NOT
syntax check lines entered, allowing the user to enter
and edit non-assembly language files. All Editor
commands funtion in text mode.

Remember, though, that all text lines must begin with a
line number; and, even in TEXTMODE. the space following
the line number is necessary.

•

• 	•
a.

CHAPTER 2: EDITOR COMMANDS

This chapter lists all the valid Editor-level commands,
in alphabetical order, along with a short description
of the purpose and function of each.

Again, remember that when the "TEXTMODE° or "EDIT'
prompt is present any input line not preceded by a line
number is presumed to be an Editor command.

If in the process of executing a command any error is
encountered, the Editor will abort execution and return
to the user, displaying the error number and
descriptive message of the error before re-prompting
the user. Refer to Appendix for possible causes of
errors.

---this page intentionally left blank---

'

•

• :m 	..

•

-

Section 2.1

edit command: 	ASH

purpose t 	ASseMble MAC/65 source files

usage: 	ASH Effilel3,Effile2].[Ofi1e3).Cifile4]

ASH 	will 	assemble 	the specified source file and
will produce a listing and object code output; the
listing may include a full cross reference of 	all
non-local 	labels. 	Filel 	is 	the source device,
file2 is the list device, file3 is the object
device, and file4 is a temporary file used to help
generate the cross reference listing.

Any or all of the four 	filespec's may be omitted,
in which case MAC/65 assumes the following default
filespec(s) are to be useds

•

filel - user source memory.
file2 - screen editor.
file3 - memory (CAUTION: see below)
file4 - none, therefore no cross reference

A 	filespec (Ifilel, 	Ifile3, etc.) 	can be omitted
by 	substituting 	a 	comma 	in 	which 	case 	the
respective default will be used.

For the listing file ONLY, you may use the special
form "1-", to indicate that you do NOT want a
listing file at all.

Some Examples,

Example: 	ASH fD2 :SOURCE,ODILI8T.ID2tO5JECT

In 	this 	example, 	the 	source 	will 	come 	from
D2sSOURCE, 	the assembler will list to D:LIST, and
the object code will be written to 02sOBJECT.

Example: 	ASH ID:SOURCE , . ID:OBJECT

In this example, the 	source 	will 	be 	read 	from
DoSOURCE 	and 	the 	object 	will 	be 	written 	to
D:OBJECT. 	The assembly listing will be written to

. 	the screen. 	 .

• . 	
Example: * ASH • 	Ilos 	• 	. 	IDsTEMP

In 	this 	example, 	the 	source 	will be read from
memory, the object will be written to memory 	(but
ONLY 	if 	the 	".OPT 	OBJ" 	directive 	is 	in 	the
source), and the assembly listing will be written
to the printer along with the complete label cross
reference. The file TEMP on disk drive I will be
created and used as • temporary filo for the cross
reference.

...-10--

•
.

t•-•-•

(—';

,

.
.

.

rm

Example: 	ASH ID:SOURCE • 	OP:

In 	this 	example, 	the 	source 	will be read from
D:SOURCE and the assembly listing will be 	written
to the printer. 	If the ".OPT OBJ" 	directive 	has
been selected in the source, the object code 	will
be placed in memory.

Example: 	ASH .I-

This 	produces 	what 	is 	probably 	the 	fastest
possible 	MAC/65 	assembly. 	Source 	code is read
from memory and no listing is produced (because of
the "I-"). 	If your program does not contain 	a 	"
.OPT 	OBJ" 	line, this becomes what is essentially
simply an error checking assembly. 	(Though 	even
if 	you 	ARE 	producing 	object code, the assembly
speed is extremely fast.)

SPECIAL NOTES

Note: 	If assembling from a "filespec", the source
MUST have bean a sAVEd file.

Note: Refer to the 	.OPT 	directive 	for 	specific
information 	on 	assembler 	listing 	and 	object
output.

Note: The object code file will have the format of
compound files created by the DOS XL SAVE command.
See the DOS XL manual for a discussion of LOAD and
SAVE file formats.

Notes 	You may use ICI as a device for the listing
or object files. 	You may 	HOT 	use 	IC: 	for 	the
source 	or 	cross 	reference 	files (thus implying
that you may not get a cross reference unless 	you
have 	a disk drive). 	HOWEVER, we do not recommend
using the cassette 	as 	the 	object 	file 	device,
since 	you may get an exceesively long leader tone
(which 	will 	be 	difficult 	to 	re-BLOAD 	later).
Instead, 	we suggest using BSAVE (after assembling
directly to memory) whenever practicable.

•

—11—

• .

f"-- • ,
(Th

Section 2.2
•

0

Section 2.4

edit commands 	BLDAD edit command, 	BYE

purposes 	allows user to LOAD Binary (memory image)
files from disk into memory

usage: 	BLOAD ffilespec

purpose, 	exit to system monitor level

usage: 	BYE

BYE will send you to the Atari memo 	Pad 	or 	your

The 	BLOAD 	command 	will load a previously BSAVEd
computer's 	built 	in 	diagnostics, 	depending 	on

binary file, an assembled object file, or a binary
file created with OS/A+ SAVe command.

which model of computer you have.

Example: 	BLOAD ID:OBJECT

This example will load the binary file 'OBJECT" to
memory at the address where It was previously
saved from or assembler for.

Section 2.5

Example, 	BLOAD IC: edit command: 	DDT

This example will load a binary file from cassette. purpose, 	enter the DDT debug package which is
part of the MAC/65 cartridge.

; 	CAUTION' it is suggested that the user only 	BLOAD
files which were assembled into MAC/65's free area
(as shown by the SIZE command) or which will load
into known safe areas of memory.

usage: 	DDT

Once you have entered this command. DDT is entered
and as has control of the system.

However, DDT saves enough of MAC/65's vital memory
that, if you follow certain simple rules, you 	may

Section 2.3
return to MAC/65 from DDT with your source program
still intact.

edit command: 	BSAVE 	• The 	DDT 	manual 	gives 	more 	information on this

purpose, 	SAVE a Binary image of a portion of
memory. 	Same as OS/A+ SAVE command.

-

subject, but as a general 	guide 	you 	must 	avoid
locations 	$80 	through $AF (in zero page) and the
memory 	locations 	located 	within 	the 	bounds

usage: 	MAW ffilespec 4 hxnuml ,hxnum2
displayed by the SIZE command.

The 	BSAVE 	command will save the memory addresses
See 	the DDT manual (which is bound with but after

details.
from 	hxnuml 	through 	hxnum2 	to 	the 	specified
device. 	The 	binary 	file 	created is compatible
with the OS/A+ SAVe command.

this MAC/65 manual) for many, many more

Example: 	BSAVE fDIOBJECT45000,5100

This example will save the memory 	add 	from
$5000 through $5100 to the file "OBJECT".

Examples 	HEAVE •Cs 4 5000,5100

This example saves the same memory to cassette.
--13--

-12 -

Section 2.6

edit commands DEL

purposes 	DELetes a line or group of lines from
the source/text in memory.

usages 	DEL lnol r ,lno2

DEL deletes source lines from memory. If only one
lno is entered, only the line will be deleted. If
two lnos are entered, all lines between and
including lnol and lno2 will be deleted.

Notes lnol must be present in memory for DEL to
execute.

Examples'
DEL 100 	 deletes only line 100
DEL.200,1300 	deletes lines 280 thru

1300, inclusive

.

-14--

Section 2.7

edit commands DOS 	r or, equivalently, CP
purpose: 	exit from MAC/65 to DOS.

usages 	DOS
or

CP

	

Either DOS or CP returns you to DOS. 	If you
booted an Atari DOS disk, you will be returned to
the Atari DOS menu. If you booted DOS XL, you
will be returned to either the DOS XL menu or CP
(Command Processor), depending upon which was
active when you entered MAC/65.

See also the Introduction to this manual for more
information on Cold Start and Warm Start as it
applies to MAC/65 and the DOS command.

--14--

•
(Th

• 	Section 2.8

edit command, ENTER

purposes 	allow entry of ASC/I (or ATASCl/)
text files into MAC/65 editor memory

usages 	ENTER 4filespec r (,m) (do

ENTER will cause the Editor to get ASCII text from
the specified device. ENTER will clear the text
area before entering from the filespec. That is
any user program is memory at the time the ENTER
command is given will be erased.

The parameter "M" (MERGE) will cause MAC/65 to NOT
clear the text area before entering from the file,
text entered will be merged with the text in
memory. If a line is entered which has the same
line number of a line in memory, the line from the
device will overwrite the line in memory.

The parameter "A" allows the user to 	enter
un-numbered text from the specified device. The
Editor will number the incoming text starting at
line 10, in increments of 10.

CAUTION: The "A" option will always clear the text
area before entering from the filespec. You may
NOT use "m" in conjunction with the "A" option.

--15--

41/1

Section 2.9

edit commands FIND

purpose: 	to FIND a string of characters somewhere
in MAC/65's editor buffer.

usage, 	FIND /string/ C lnol C ,1no2 3I C ,A

The FIND command will search all lines in memory or the
specified line(s) (lnol through lno2) for the "string"
given between the matching delimiter. The delimiter
may be any character except a space. If a match is
found, the line containing the match will be listed to
the screen.

Section 2.10

edit commands LIST

purpose, 	to LIST the contents of all or part of
MAC/65'a editor buffer in ASCII (ATASCII)
form to a disk or device.

usages 	LIST C ffilespec,] C lnol C ,Ino2 I 3

LIST lists the source file to the screen, or
device when "ifilespee is specified. If no ince
are specified, listing will begin at the first
line in memory and end with the last line in
memory.

Notes do NOT enclose a string in double quotes.

Examples FIND/LDX/

This example will search for the first occurance
of "LDX".

Example, FIND\Labe1\25,80 	
(-- 	(Th

This example will search for the first occurance
of "Label" in lines 25 through 80.

If the option "A" is specified, all matches within
the specified line range will be listed to the
screen. Remember, if no line numbers are given,
the range is the entire program.

If only lnol is specified, that line will be
listed if it is in memory. If lnol and Ino2 are
specified, all lines between and including lnol
and Ino2 will be listed. When Inol and Ino2 are
specified, neither one has to be in memory as LIST
will search for the first line in memory greater
than or equal to lnol, and will stop listing when
the line in memory is greater than lno2.

EXAMPLE, 	LIST IP:
will list the current contents
of the editor memory to the Pt
(printer) device.

EXAMPLE, 	LIST 102:TEMP, 1030, 1800
lists only those lines lying
in the line number range from
1030 to 1800, inclusive, to the
disk file named 'TEMP" on disk
drive 2.

NOTE, The second example points out a method of
moving or duplicating large portions of text or
source via the use of temporary disk files. By
suitably RENumbering the in-memory text before and
after the LIST, and by then using ENTER with the
Merge option, quits complex movements are
possible.

- -17 - -

(0
	 •

Section 2.11

edit command; LOAD

purposes 	to reLOAD a previously SAVEd MAC/65 token
file from disk to editor memory.

usage: 	 LOAD Ofilespec r • A
LOAD will reload a previously SAVEd tokenized file
into memory. LOAD will clear the user memory
before loading from the specified device unless
the ",A" parameter is appended..'

The parameter "A" (for APPEND) causes the Editor
to NOT clear the text area before loading from the
file. Instead, the load file will be appended
with the current file in memory.

Note: The Append option will NOT renumber the file
after loading. It is possible to have DUPLICATE
LINE NUMBERS. Use the REM command if there are
duplicate line numbers.

Section 2.12

edit command, LOMEM

purpose; 	change the lower bound of editor memory
usable by MAC/65.

usage: 	 LOMEM hxnum

LOMEM allows the user to select the address where
the source program begins.

CAUTION! 	Executing LOMEM clears out any source
currently in memory; as if the user had typed
'NEW".

Section 2.13

edit command: NEW

purposes 	clears out all editor memory, sets syntax
checking mode.

usage: 	 NEW

NEW will clear all user source code from memory .
and reset the Editor to syntax mode. The "EDIT"
prompt appears, reminding the user that syntax
checking is now active. If the user needs to
defeat the syntax checking, he/she must use the
TEXT command.

Section 2.14

edit command: NUM

purpose, 	initiates automatic line NUMbering mode

usages 	 NUM rdcnuml t ,dcnum2 	3

NUM will cause the Editor to auto-number the
incoming text from the Screen Editor (E:). A
space is automatically printed after the line
number. If no dcnums are specified. NUM will
start at the last line number plus 10. NUM denuml
will start at the last line number plus "dcnuml"
in increments of "denuml". NUM dcnuml, dcnum2
will start at "dcnuml" in increments of "dcnum2".

EXAMPLE: 	NUM 1000,20
will cause the Editor to prompt the user with
the number "1000" followed by a space. When
the user has entered a line, the next prompt
will be "1020", etc.

The NUM mode will terminate if the line number
which would be next in sequence is present in
memory.

You may terminate NUM mode by pressing the BREAK
key or by typing a CONTROL-3. Optionally, you may
press CONTROL-C followed by a CRETURN1.

;

--19--

rTh

Section 2.15 Section 2.17

edit commands PRINT edit command: REP

purposes

•

to PRINT all or part of the Editor text
or source to a disk file or a device.

purpose: REPlaces occurrence(s) of a given string
with another given string.

usages PRINT C ifilespec, 	lnol r 01102 3 3 usage:

Print is exactly like LIST except that the line
numbers are not listed. If a file is PRINTed to a
disk, it may be reENTERed into the M1,C/65 memory
using the ENTER command with .the Append line
number option.

Section 2.16

edit commands REM

purpose: 	RENumber all lines in Editor memory.

usage: 	REM C dcnuml C .dcnum2 3 3

REM renumbers the source lines in memory. 	If no
dcnums 	are specified, REM will renumber the
program starting at line 10 in increments of 10.
REM dcnuml will renumber the lines starting at
line 10 in increments of dcnuml. 	REM dcnuml,
denum2 will 	renumber starting at dcnuml in
increments of dcnum2.

REP /old string/new string/ (Inol C,Ino2 3 3

The REP command will search the specified lines
(all or lnol through lno2) for the "old string".

The "A" option will cause all occurrences of "old
string" to be replaced with 'new string". The "0"
option will list the line containing the match and
prompt the user for the change (Y followed by
RETURN for change, RETURN for .skip this
occurrence.) If neither "A" or "Q" is specified,
only the first occurrence of "old string" will be
replaced with "new string". Each time a change is
made, the line is listed.

Example: REPADY/LDA/200,250,0

This example will search for the string "LDY*
between the lines 200 and 250, inclusive, and
prompt the user at each occurrence to change or
skip.

Notes Hitting BREAK (ESCape on Apple II) will
terminate the REP mode and return to the Editor.

Note, If a change causes a syntax error in the
line, the REP mode will be terminated and control
will return to the Editor. Of course, if TEXTMODE
is selected, there can be no syntax errors.

- -20 - -

Section 2.18

edit commands SAVE

purposes 	SAVER the internal (tokenized) form of
. the user's in-memory text/source to a

disk file.

usage, 	 SAVE ifilespec

SAVE will save the tokenized user source file to
the specified device. The format of a tokenized
file is as follows,

Pile Header
Two byte number (LSB,MSB) specifies the
size of the'file in bytes.

For each line in the files
Two byte line number (LSB,MSB)

followed by
One byte length of line (actually offset
to next line)

followed by
The tokenized line

Section 2.19

edit commands SIZE

purpose, 	determines and displays the SIZE of
various portions of memory used by
the MAC/65 Editor.

usage, 	 SIZE

SIZE will print the user LOMEM address, the
highest used memory address, and the highest
usable memory address, in that order, using
hexadecimal notation for the add

These memory addresses are especially helpful in
determining what areas of memory to avoid when
assembling programs directly to memory. Remember,
though, that MAC/65 needs a certain amount of room
above the middle address shown for the symbol
table (when an assembly is made). See also the
DDT manual for hints on memory usage.

Section 2.20

edit commands TEXT

purpose: 	allow entry of arbitrary ASCII (ATASCII)
text without syntax checking.

usages 	 TEXT 	 •

TEXT will clear all user source code from memory
and put the Editor in the text mode. After this
command is used, the Editor will prompt the user
for new commands and text with the word "TEXTHODE"
(instead of "EDIT"), indicating that no syntax
checking is taking place.

TEXTMODE may be terminated by the NEW command.
,CAUTION, there is no way to go back and forth
between syntax (EDIT) mode and TEXTMODE without
clearing the Editor's memory each time.

•
Section 2.21

edit command: 7

purposes 	makes hexadecimal/decimal conversions

usage: 	 7 (5hxnum) (dcnum)

? 	is 	the 	resident hex/decimal decimal/hex
converter. Numbers in the range 0 - 65535 decimal
(0000 to FFFF hex) may be converted.

Example: 7 $1200 will print .4608
8190 will print .$1FFE

- -22 -
--23--

---this page intentionally left blank--

- -24 - -

r--

CHAPTER 3, THE MACRO ASSEMBLER

The Assembler is entered from MAC/65 with the command
ASH. For ASH command syntax, refer to section 2.1 (in
the Editor commands). Assembly may be terminated by
hitting the BREAK key. MA0165 properly closes files
and "cleans up" before terminating the assembly.

3.1 ASSEMBLER INPUT

The Assembler will get a line at a time from the
specified device or from memory. If assembling from a
device, the file must have been previously SAVEd by the
Editor. All discussions of source lines and syntax
will be at the Editor line entry level. The tokenized
(SAVEd) form is discussed in general terms under the
SAVE command, section 2.19.

Source lines are in the form:

line number + mandatory space + source statement

The source statement may be in one of the following
format

(label] 	(6502 instruction) (directive) 	[comment]

The following examples are valid source lines:

100 LABEL
120 ;Comment line
140 LDA IS 	and then any comment at all
150 	DEY
160 ASL A 	double number In accumulator,
170 GETNUM LDA (ADDRESS).Y
100 .PAGE "directives are legal, too"

In 	general, the format is as specified in the MOS
Technology 6502 Programing Manual. We recommend that
the user unfamiliar with 6502 assembly language
programming should purchase,

"Machine Language for Beginners" by R. Mansfield
or

"Programing the 6502" by Rodney Zak,
or

any other book which seems compatible with the •
users current knowledge of assembly language.

SPECIAL NOTE: The assembler of MAC/65 understands only
upper case labels, op codes, etc. HOWEVER, the editor
(see expecially section 1.3) will convert all lower
case to upper case (except in comments and quoted
strings), so the user may feel free to type and edit In
whichever case he/she feels most comfortable with.

- -25 - -

3.2 INSTRUCTION FORMAT

	

A) 	Instruction mnemonics are as described in the MOS
Technology Programing Manual.

	

0) 	Immediate operands begin with "I".

	

. C) 	"(operand,X)" and "(operand),Y* designate indexed
indirect and indirect indexed addressing, respec-
tively.

D) "operand,X" 	and "operand,Y° designate indexed
addressing.

E) Zero page operands cannot be forward referenced.
. Attempting to do so will usually result in a

"PHASE ERROR" message.

	

P) 	Forward equates are evaluated within the limits of
a two pass assembler.

"" designates the current location counter.

H) Comment lines may begin with ":" or "".

I) A semicolon (":") anywhere in a line indicates the
beginning of the comment field for that line.

J) Hex constants begin with "$".

K) The 'A" operand is reserved for accumulator
addressing.

L) The addressing formats available are extended to
allow the new addressing modes available with the
NCR 65CO2 microprocessor. Be. Chapter 7 	for the
descriptions of 65CO2 instructions not included in
the standard 6502 set. The extensions include:

1. "(operand)", indicating indirect addressing, is
now legal with ADC, AND, CM?, EOR, LDA, ORA,
SBC, and STA. The operand must be in zero page.

2. "(operand,X) . is now legal when used with JMP.
The operand here may be any absolute address.

3. The BIT instruction is allowed the addressing
mode "operand,x". The operand may be either a
zero page or absolute address.

4. The mnemonics BRA, DEA, INA, PHX, PRY, PLK,
PLY, STZ, TRH, and TSB are now recognized.

3.3 LABELS

Labels must begin with an Alpha character, "@", or "7'.
The remaining characters may be as the first or may be
"0" to "9" or ".". The characters must be uppercase
(but remember that the editor always converts lowercase
for you) and cannot be broken by a space. The maximum
number of characters in a label is 127, and ALL are
significant.

Labels beginning with a question mark ("7") 	are
assumed to be "LOCAL" labels. Such labels are
"visible" only to code encountered within the current
local region. Local regions are delimited by
successive occurrences of the .LOCAL directive, with
the 'first region assumed to start at the beginning of
the assembly source, whether or not a .LOCAL is coded
there or not. There are a maximum of 62 local regions
in any one assembly. Of course, if a .LOCAL is not
encountered anywhere in the assembly, then all labels
are accessible at all times. In any case, labels
beginning With a question mark will NOT be listed in

1"--%
	

the symbol table.

The following are examples of valid labels,

TESTI @.INC LOCATION LOC22A WHAT?
ADDRESS1.1 EXP.. SINE45TAB.

,
.

1
,

i

3.4 	OPERANDS

An operand can be a label, a Macro parameter, a numeric
constant, 	the 	current 	program 	counter 	01, 	"A" for
accumulator addressing, 	an 	expression, 	or 	an 	ASCII
character preceded by a single quote 	(e.g., 	'7). 	The
following are examples of the various types of operands:

i 	. 10 LDA •VALUE 	1 label
1 	. 15 ROR A 	 1 accumulator addressing

! 20 .BYTE 123,$45 	7 numeric constants

! 25 .IF 10 	 7 Macro parameter

i 	

. 30
35

CMP
THISLOC ■ *VA 	

1 ASCII character
1 current PC

1
40 .WORD PNBASE+CPW0+4”256 	1 expression

I 	(Th

--26-- 	 I 	 --27--

•

3.5 OPERATORS

The following are the operators currently supported by
MAC/65:

C 	3 pseudo parentheses
+ addition
- subtraction
/ division
\ modulo (remainder after integer division)
• multiplication
& binary AND 	 .
I binary OR 	 .
• binary EOR

• equality, 	logical
s •greater than, 	logical
4 lees than, 	logical
.cs inequality, 	logical
s ■ greater or equal, 	logical
(.. less or equal, 	logical
.OR logical OR
.AND

. 	
• logical AND

unary minus
.NOT unary logical. Returns true (1) if ex-

pression is zero. Returns false (0) If
expression is non-zero.

-.DEP 	unary logical label definition. Returns
true if label is defined.

•REF 	unary logical label reference. Returns
true if label has been referenced.
unary. Returns the high byte of the
expression.
unary. Returns the low byte of the
expression.

Logical operators will always return either TRUE (1) or
FALSE (0). 	However, any non-zero value is considered
true when making a conditional test. 	Also, undefined
labels are given a value of zero (False).

Some of these operators perhaps need some explanation
as to their usage and purpose. The operators are thus
described in groups in the following subsections.

3.5.1 Operators: 	+ - • / \

These are the familiar arithmetic operators, though "\"
may be new to you, even if the modulus operation is
not. Remember, though, that they perform I6-bit signed
arithmetic and ignore any overflows. Thus, for
example, the value of $FF00+4096 is S0F00, and no error
is generated.

COMMENT: "opt \ op2" is exactly equivalent to
"opl - (op2 • (opl / op2)J"
and is the remainder after integer division
is performed. Example: 11\4 is 3.

3.5.2 Operators: 	L I "

There are the binary or "bitwise" operators. They
operate on values as 16 bit words, performing
bit-by-bit ANDs, ORs, or EXCLUSIVE ORs. They are 16
bit equivalents of the 6502 opcodes AND, ORA, and EOR.

(Th 	 EXAMPLES: 	$FF00 6 MIFF is $0000
$03 1 $0A 	is $000D

. 	$003F ' $011F is $0120

3.5.3 Operators:) C es >Am 4.

These are the familiar comparison operators. 	They
perform 16 bit unsigned compare. on pairs of operands
and return a TRUE (1) or FALSE (0) value.

EXAMPLES: 3 4 5 returns 1
5 4 5 returns 0
5 4. 5 returns 1

CAUTION: Remember, these operators always work on PAIRS
of operands. The operators "s" and "4" have quite
different meanings when used as unary operators.

3.5.4 Operators: 	.OR .AND .NOT

These operators also perform logical operations and
should not be confused with their bitwise companions.

; 	 Remember, these operators always return only TRUE or
FALSE.

; (Th
EXAMPLES: 	3 .OR 0 	returns 1

3 .AND 2 	returns 1
6 .AND 0 	returns 0
.NOT 7 	returns 0

1 	
•

--29--

•

•
3.5.5 Operator: 	- 	(unary)

The minus sign may be used as a unary operator. 	Its
effect is the same as if a minus sign had been used in
a binary operation where the first operator is zero.

EXAMPLE: 	-2 is $FFFE (same as 0-2)

3.5.6 Operators: 	4) (unary)

3.5.8 Operator: 	.REP

This unary operator tests whether the following label
has been referenced by any instruction or directive in
the assembly yet; and, in conjunction with the .IF
directive, produces the effect of returning a TRUE or
FALSE value.

These UNARY operators are extremely useful when it is
desired to extract just the high order or low order
byte of an expression or label. Probably their most
common use will be that of supplying the high and low
order bytes of an address to be used in a "LDA 11" or
similar immediate instruction.

	

EXAMPLE: 	FLEEP ■ $3456
LDA • 4FLEEP (same as LOA •$56)
LDA I>FLEEP (same as LOA •$34)

	

3.5.7 Operator: 	•DEF 	 PTh

This unary operator tests whether the following label
has been defined yet, returning TRUE or FALSE as
appropriate.

CAUTION: Defining a label AFTER the use a .DEF which
references it can be dangerous, particularly if the
.DEF is used in a ./F directive.

	

EXAMPLE, 	 .IF .DEP Z/LK
.BYTE "generate some bytes"
.ENDIF

2/LK ■ $3000

In this example, the .BYTE string will NOT be generated
in the first pass but WILL be generated In the second
pass. Thus, any following code will almost undoubtedly
generate a PHASE ERROR.

Obviously, the same cautions about .DEF being used
before the label definition apply to .REF also, but
here we can obtain some advantage from the situation.

EXAMPLE: 	 .IF .REF PRINTMS0
PRINTMSG

... (code to implement
the PRINTMSG
routine)

.ENDIF

In this example, the code Implementing PRINTMSG will
ONLY be assembled if something preceding this point in
the assembly has referred to the label PRINTMSGl This
is a very powerful way to build an assembly language
library and assemble only the 'needed routines. Of
course, this implies that the library must be .INCLUDEd
as the last part of the assembly, but this seems like a
not too onerous restriction. In fact, OSS has used
this technique in writing the libraries for the C/65
compiler.

CAUTION: note that in the description above it was
implied that .REF only worked properly with a .IF
directive. Not only in this restriction imposed, but
attempts to use .REF in any other way can produce
bizarre results. ALSO, •REF cannot effectively be used
in combination with any other operators. Thus, for
example,

./F .REP ZAM .OR .REF SLOOP 	is ILLEGAL,

(Th

- -30 - -
--31--

•
The only operator which can legally combined with .REF
is .NOT, as in .IF .NOT .REF LABEL.

Note that the illegal line above could be simulated
thus:

EXAMPLE: 	DO/T 	0
.IF •REF ZAN

	

DOIT 	1
.ENDIF
.IF .REF SLOOP

DO!? . ■ 1
.ENDIF
.IF DOIT •

3.5.9 Operator: C

MAC/65 supports the use of the square brackets as
"pseudo parentheses". Ordinary round parentheses may
NOT be used for grouping expressions, etc., as they
must retain their special meanings With regards to the
various addressing modes. In general, the square
brackets may be used anywhere in a MAC/65 expression to
clarify or change the order of evaluation of the
expression.

EXAMPLES: '
LDP. GEORGE+5*3 	This is legal, but

it multiplies 3.5
and adds the 15 to
GEORGE. ..probably
not what you wanted.

LDA (GEORGE+5)*3 	Syntax Error!!!
LDA [GEORGE+5)*3 i OK...the addition

is performed before
the multiplication

LDA ([GEORGE+5)*3),Y I See the need
for both kinds of
"parentheses"?

REMEMBER: Operators 	in MAC/65 expressions follow
precedence rules. The square brackets may be used to
override these rules.

3.6 ASSEMBLER EXPRESSIONS

An expression is any valid combination of operands and
operators which the assembler will evaluate to a 16-bit
unsigned number with any overflow ignored. Expressions
can be arithmetric or logical. The following are
examples of valid expressions,

•
10 	.WORD TABLEBASE+LINE*COLUNM
55 	.IF .DEF INTEGER .AND 	 OR VER 	3
200 	.BYTE)EXPLOT-1,)EXDRAW-1,)EXFILL-1
300 	LDA 	I < (< ADDRESS"-1) + 1
305 	CM) 	$ -1
400 	CPX 	I'A
440 	INC 	11+1

3.7 OPERATOR PRECEDENCE

The following are the precedence levels (high to low)
used in evaluating assembler expressions:

() (pseudo parenthesis)
) (high byte), ((low byte), .DEF. .REF, - (unary)
.NOT
r, 	/,
+, -

I, 	'
), 4, c.,)., 4> 	 (comparison operators)

.AND

.OR

Operators 	grouped 	on 	the same line have equal
precedence and will be executed in left-to-right order
unless higher precedence operator(s) intervene.

Generally, the operator precedences are what you would
expect on e mathematical basis. Care must be taken,
however, with the '4' and '). unary operators.

For Example:
TABLE $45FE

LDA I) TABLE + 3 	A receives $48
LDA I) CTABLE+3) 	A receives $46

(Th

- -32 - - 	 --33--

3.8 NUMERIC CONSTANTS

CHAPTER 4: DIRECTIVES

MAC/65 	accepts three types of numeric constants:
decimal, hexadecimal, and characters.

A decimal constant is simply a decimal number in the
range 0 through 65535; an attempt to use a decimal
number beyond these bounds may or may not work and will
certainly produce unexpected and undesired results.

EXAMPLES: 	1 	234 	65200 32767
(as used:) 	'BYTE 2,4,8,16,32,64

LDA 11

A hexadecimal constant consists of a dollar sign
followed by one to four legal hexadecimal digits
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Again, usage of
more than four digits may produce unwanted results.

EXAMPLES: 	$1 SEA $FF00 $7FFF
(as used:) 	.WORD $100,$200,$400,$000,$1000

AND f$7F

A character constant is an apostrophe followed by any
printable or displayable character. 	The value of a
character constant is the ASCII (or ATASCII) value of

■Th
the character following the apostrophe.

EXAMPLES: 	.A 	 4.

(as used:) 	CMP 1. ■
CMP 15+1 	same as 1$58
CMP -1'3+3 I same as UM

3.9 STRINGS

Strings are of two types. 	String literals (example:
"This is a string literal"), and string variables for
Macros (examples i$5).

Example: 10 	.BYTE 'A STRING OF CHARACTERS"
or

Example: 20 	.SBYTE t$1

NOTE that there are really only six places where a
string is legal in MAC/651 as a parameter to a called
macro or as the operand to .BYTE, •CBYTE, .SBYTE,
.TITLE, or .PAGE.

(Th

As noted in Section 3.1, the instruction field of an
assembled line may contain an assembler directive
(instead of a valid 6502 instruction). This chapter
will list and describe, in roughly alphabetical order,
all the directives legal under MAC/65 (excepting
directives specific to macros, which will be discussed
separately in Chapter 5).

Directives may be classified into three types: (1)
those which produce object code for use by the
assembled program (e.g., .BYTE, .WORD, etc.); (2) those
which direct the assembler to perform some task, such
as changing where in memory the object code should go
or giving a value to a label (e.g., m, etc.); and
(3) those which are provided for the convenience of the
programmer, giving him/her control over listing format,
location of source, etc. (e.g., .TITLE, .OPT,
.INCLUDE).

Obviously, we could in theory do without the type 3
directives; but, as you read the descriptions that
follow, you will soon discover that in practice these
directives are most useful in helping your 	6502
assembly language production. 	Incidentally, all the
macro-specific 	directives 	could 	presumably 	be
classified as type 3.

Three of the directives which follow (.PAGE, .TITLE,
and .ERROR) allow the user to specify a string
(enclosed in quotes) which will be printed out. For
these three directives, the user is limited to a
maximum string length of 70 characters. Strings longer
than 70 characters will be truncated.

--35--

Section 4.1
•

directives 	* ■ 	 and .0110

purpose, 	change current origin of the assembler's
location counter

usages 	 (label] •■ expression
[label] .0120 expression

The *.4 (or, equivalently, .0110) directive will assign
the vaIue of the expression to the location counter.
The expression cannot be foward referenced. (h. must
be written with no intervening spaces.)

Example, 50 	$1234 	. 	sets the location
counter to $1234

135 	.ORG $1234 t ditto

Another common usage of " ■ is to reserve space for data
to be filled in or used at run time. Since the single
character "" may be treated as a label referencing the
current location counter value, the form "* ■ *+exp" is
thus the most common way to reserve "exp" bytes for
later use.

Example: 70 LOC * ■ *4.1 	assigns the current
value of the location
counter to LOC and
then advances the
counter by one.

70 LOC .ORG *+1 ; ditto

(Thus LOC may be thought of as a one byte
reserved memory cell.)

CAUTION: Because any label associates with 	this
directive is assigned the value of the location counter
BEFORE the directive is executed, it is NOT advisable
to give a label to "* ■ " or ".01W" unless, indeed, it is
being used as in the second example (i.e., as a memory
reserver).

NOTE, Some assemblers treat the label on an "ORO" or
".ORG" directive differently. That is, they assign the
Label to the location counter AFTER it has been changed
by the directive. Use caution when converting from and
to such assemblers; pay special attention to label
usage. When in doubt, move the label to the next
preceding or next following line, as appropriate.

SPECIAL NOTE: Although the form "label •. *+exp" is
standard 6502 usage, you may find .MAC/65's ".DS"
directive (section 4.7) easier to read and understand.

.

—36--

Section 4.2

directive: 	■ and .EOU

purposes 	assigns a value to a label

usages 	 label ■ expression
label .EOU expression

The " ■ " directive will equate "label" with the value of
the expression. A "label" can he equated via ".." only
once within a program.

Examples 10 PLAYERO ■ PMBASE + $ 200
20 PLAYER1 .EOU PHDASE + $ 280

Note: If a "label" is equated more than once, "label"
will contain the value of the most recent equate. This
process will, however, result in an assembly error.

Section 4.3

directives 	. ■

'
purpose: 	assign a possibly transitory value to

a label

usage: 	 label . ■ expression

The . ■ directive will SET "label" with the value of the
expression. Using this directive, a "label" may be set
to one or more values as many times as needed in the
same program.

• EXAMPLE:
10 LDL 	5
20 	LDA ItEt. 	 same as LDA 95
30 1,81.. 	. ■ 	 3+'A
40 	LDA SLIM 	t same as LDA 968

CAUTION: A label which has been equated (via the "40'
directive) or assigned a value through usage as an
instruction label may not than be set to another value
by "..".

--36-- 	 --37--

Section 4.4

directive: 	.BYTE 	 [and .SBYTE7

purposes 	specifies the contents of individual
bytes in the output object 	.

usage:
(label) 	.BYTE 	(+exp.] 	(exp)(strvar) 	[.(exp)(strvar) 	...]
(label] 	.SBYTE (+exp,) 	(exp)(strvar) 	C.(exp)(strger) 	...)

Example: 	108 	.BYTE +$88,"8EF"..G+$88

This example will produce, C4 CS C6 47.

(Note 	especially 	the 	effect 	of 	adding 	$80 via the
modifier and also adding it 	to 	the 	particular 	byte.
The 	result is an unchanged byte, since we have added a
total of 256 	($100), which does not 	change 	the 	lower
byte of a 16 bit result.)

Example: 	55 	.SBYTE +$40 • 	"Al2"
The 	•BYTE 	and 	.SBYTE 	directives 	allow 	the user to
generate individual bytes of memory image in the output
object. 	Expressions 	must 	evaluate 	to 	an 	8-bit
arithmetic 	result. 	A 	strvar 	will 	generate as many
bytes as 	the 	length 	of 	the 	string. 	.BYTE 	simply
assembles 	the 	bytes 	as 	entered, 	while 	.SBYTE will
convert the bytes to Atari screen codes.

This example will produces 61 51 52

Example: 	08 	.SBYTE +$CO 3 'G-SCO,"REEN"

This example will produce: 27 F2 ES E5 EE

. 	 Examples 	100 	•BYTE 'ABC' . 3 , -1

This example will produce the following output bytes'
41 42 43 03 FF.

Note: 	.SnYTE performs its conversions 	according 	to 	a
numerical 	algorithm 	and 	does 	NOT 	special 	case any
control characters, 	including 	BELL, 	TAB, 	etc.--these
characters ARE converted.

Note that the negative expression was truncated 	to 	a
single byte value.

Section 4.5
Examples 	50 	•SBYTE "Hello!'

directive: 	.CBYTE
On 	the 	Atari, this example will produce the following
screen codes:

28 65 6C 6C 6F 01.
purposes 	same as .BYTE except that the most

significant bit of the last byte of a
string argument is inverted

usage:
SPECIAL 	NOTE: 	Both .BYTE and .SBYTE allow an additive (label) 	.CBYTE 	(+exp.] 	(exp)(strvar) 	C,(exp)(strvar)...)
Modifier. 	A Modifier is an expression 	which 	will 	be
added 	to 	all 	of 	bytes 	assembled. 	The 	assembler
recognizes the Modifer expression by 	the 	presence 	of
the 	'+" 	character. 	The Modifier expression will not
itself be generated as part of the output.

Example: 	5 	•BYTE +$80 • "Atm" , -1

This example will produce the following bytes:

The 	•CBYTE 	directive 	may 	often be used to advantage
when building tables of 	strings, 	etc., 	where 	it 	is
desirable 	to 	indicate 	the 	end 	of 	a string by some
method other than, for 	example, 	storing 	a 	following
zero 	byte. 	By inverting the sense of the upper bit of
that last character of the string, a routine reading
the strings from the table could easily do a BM/ or DPI.
as it reads each character.

Cl C2 C3 7F.

. Example: 	ERRORS .CBYTE WSYSTEM"

The line shown would produce these object bytes:
01 53 59 53 54 45 CE

r--'

(.......\
(continued on next page)

--38--
--39--

(XBYTE, continued)

And a subroutine might access the characters thus:
LDY il

LOOP 	LDA ERRORS,?
BMI ENDOFSTRING
IN?
ONE LOOP
...

ENDOFSTRING
...

Section 4.6

directives 	.DBYTE 	 C see also •WORD 3

purpose: 	specifies Dual BYTE values to be
placed in the output object,

usage: 	(label) 	•DBYTE 	oxp C 	,exp ... 	3
.

Both the .WORD and .DBYTE directives will put the value
of 	each 	expression into the object code as two bytes.
However, while .WORD will assemble the expression(s) 	in 	

/--", 6502 	address 	order 	(least 	significant 	byte, 	most significant 	byte) : 	.DBYTE 	will 	assemble 	the 	 ,
expression(s) 	in 	the 	reverse 	order 	(i.e., 	most
significant byte, least significant byte).

.DBYTE 	has limited usage in a 6502 environment, and it
would most probably be used in 	building 	tables 	where
its reversed order might be more desirable.

EXAMPLE: 	.DBYTE 	$1234,1,-1
produces: 	12 34 00 01 FF FF

.WORD 	$1234,1,-1 	 .
produces: 	34 12 PI 00 FF FF

Section 4.7

directive: 	.DS

purpose: 	reserves space for data without initializing
the space to any particular value(s).

usage: 	(label] .DS expression
,
,

Using ' •DS expression" is exactly equivalent to 	using 	 , . • 	"- 14expression". 	That 	is, 	the 	label 	(if it is
given) is 	set 	equal 	to 	the 	current 	value 	of 	the
location 	counter. 	Then the value of the expression is
added to the location counter.

Example: 	BUFFERLEN .DS 1 i reserve a single byte
BUFFER 	.DS 256 r reserve 256 bytes

1

--40-- 	 I

I•

1
1
f

Section 4.8

directives 	.ELSE

purpose: 	SEE description of ./F for purpose and usage.

Section 4.9

directives 	.END

purpose: 	terminate an in-memory assembly

usage: 	[label) 	.END

The .END directive will terminate the assembly ONLY 	if
the 	source is being read from memory. 	Otherwise, 	.END
will have no effect on assembly.

This "no effect 	is handy in that you may thus .INCLUDE
. 	file(a) 	without having to edit out any .END statements

they might contain. 	In truth, 	•END 	is 	generally 	not
needed at all with MAC/65.

Section 4.10

directive: 	.ENDIF

purpose: 	terminate a conditional assembly block

SEE description of .IF for usage and details.

Section 4.11

directive: 	.ERROR

purpose, 	force an assembler error and message

usage: 	[label] 	.ERROR 	[string]

The .ERROR directive allows 	the 	user 	to 	generate 	a
pseudo error. The string specified by .ERROR will be
sent to the screen as if it were an assembler-generated
error. The error will be included in the count of
errors given at the end of the assembly.

Examples 	100 	.ERROR 	"MISSING PARAMETER:"

'

--41--

Section 4.12

directive: 	.FLOAT

purposes 	specifies floating point constant values
to be placed in the output object.

usages
[label] .FLOAT floating-constant (floating-constant...)

This directive would normally only be used by the
programmer wishing to access the built-in floating
point routines of the Atari Operating System ROM's.

Each floating point constant following the .FLOAT
directive will produce 6 bytes of output object code,
in a format consistent with the above-Tentioned
floating point routines. In particular, the first byte
contains the exponent portion of the number, in
excess-64 notation representing powers of 100. The
upper bit of the exponent byte designates the sign of
the mantissa portion. The following 5 bytes are the
mantissa, in packed BCD form, normalized on a byte
boundary (consistent with the power.-of-l00 exponent).

EXAMPLESs
.FLOAT 3.14156295,-2.718281828

The above example would produce the following bytes in
the output object codes ,

40 03 14 15 62 95
CO 27 18 28 18 28

NOTE' Only floating point constants, NOT expressions,
are legal as operands to .FLOAT. Generally, this is
not a problem, since the user may perform any constant
arithmetic on a calculator (or in BASIC) before placing
the result in his/her MAC/65 program.

Section 4.13

directives .IF

purpose, chooses to perform or not perform some
portion of an assembly based on the
"truth" of an expression.

usage, ./F 	exp
(.ELSE)
.ENDIF

usage notes there may be any number of lines of
assembly language code or directives
between .IF and .ELSE or .ENDIF and
similarly between .ELSE and .ENDIF.

The 	.IF, 	.ELSE, 	and 	.ENDIF directives control
conditional assembly.

When a .IF is encountered, the following expression is
evaluated. If it is non-zero (TRUE), the source lines
following .IF will be assembled, continuing until an
.ELSE or .ENDIF is encountered. If an .ELSE is
encountered before an .END1F, then all the source lines
between the .ELSE and the corresponding .ENDIF will not
be assembled. If the expression evaluates to zero
(false), the source lines following .IF will not be
assembled. Assembly.will resume when a corresponding
.ENDIF or an .ELSE is encountered.

The .IF-.ENDIF and ./F-.ELSE-.ENDIF constructs may be
nested to a depth of 14 levels. When nested, the
"search" for the "corresponding" .ELSE or .ENDIF skips
over complete •IF-.ENDIF constructs if necessary.

Exampless

10 .IP 	1 non-zero, 	therefore true
20 LDA 	f 	'7 r 	these two lines will
30 JSR 	CHAROUT ; be assembled
40 .ENDIF

CM

- -42 - -
--43--

'

.

I

Section 4.13 	(.IF continued)

,

Section 4.14

directive: 	.INCLUDE
EXAMPLE:

'
10 	.IF• 	0 	 i 	expression is false
11 	LOX 	# 'ADDRESS 	1 these two lines will

'
purpose: 	allows one assembly language program to

request that another program be included
and assembled in-line

12 	LDY 	8 :ADDRESS 	I not be assembled
13 	.IF 	1 	 . usage: 	 .INCLUDE tfilespec
14 	.ERROR "can't get here"
15 ; 	likewise, this can't be assembled because it . usage note: 	this directive should NOT have a label
16 ; is "nested" within the .IF 0 structure .
17 	;
18 	.ELSE

The .INCLUDE directive causes the 	assembler 	to 	begin
reading 	source 	lines 	from 	the specified "filespec".

• 19 1
20 	LOX 	i 'ADDRESS 	1 these lines will
21 	LDA 	8 'ADDRESS 	I be assembled

When the end of "filespec" is 	reached, 	the 	assembler
will 	resume 	reading source from the previous file (or
memory).

22 	.ENDIF
23 	JSR 	 PRINTSTRING 	, go print the string CAUTION: 	The ./NCLUDEd file MUST be a properly SAVEd

MAC/65 tokenized program. 	It can NOT be an ASCII file.
Notes The assembler resets the conditional stack at the
begining of each pass. Missing •ENDIF(s) will NOT be
flagged. Notes A .INCLUDED file cannot itself contain a .INCLUDE

directive.

'
EXAMPLE: 	.INCLUDE 8D:SYSEOU.M65

This example line will include the system equates 	file
supplied by OSS.

•

'

I.

(^ i

--44-- 	 --45--

Section 4.15

directives 	.LOCAL
,

purposes 	delimits a local label region

usages 	 .LOCAL 	 ,

usage note: 	this directive should not be associated
with a label.

This directive serves to end the previous local 	region
and 	begin 	a new local region. 	It is assumed that the
first local region 	begins 	at 	the 	beginning 	of 	the

,Th

1
I

1

Section 4.16

directives 	.OPT

purposes 	selects various assembly control OPTions

usages 	 .OPT 	option E, 	(NO] option ...]
(or)
•OPT 	NO option C. 	(NO] option ...]

usage notes: 	the valid options are as follows,
LIST 	ERR 	EJECT 	OBJ
MLIST 	CLIST 	NUM 	XREP

assembly, 	and the last local region ends at the end of
the assembly. 	 .

.

Within 	each 	local 	region, any label beginning with a
colon ("1") or question mark ('?") 	is assumed to be 	a
"local 	label". 	As 	such, 	it 	is .invisible to code,
equates, references, etc., outside 	of 	its 	own 	local
region.

The , .OPT 	directive allows the user to control certain
functions of the assembly. Generally, coding ".OPT
option" will invoke a feature or option, while ".OPT NO
option" will "turn off" that same feature.

This 	feature 	is especially handy when using automatic
code generators or when several people are working on a
single project. 	In both these cases, the coder may use
labels 	beginning 	with 	"t" 	or 	"7" 	and be sure that
there will be no duplicate label errors produced.

/—",..

You may use any number of options (or NO options) on 	a
single source line. 	For example, 	it is legal to use,

.OPT 	NO LIST, NO XREF, OBJ, ERR

The 	following 	are 	the descriptions of the individual
options*

EXAMPLE* 	10 	•■ $4000 LIST controls the entire assembly listing.
11 	LOX 13 	I establish a counter NO LIST turns off all listing except error lines.
12 ?LOOP
13 	LDA FROM,X ; get a byte
14 	STA TO,X 	I put a byte

ERR will determine if errors are returned to the
user in the listing and/or the screen.

15 	DEX 	; more to do? NO ERR is thus dangerous.
16 	8PL ?LOOP ; goes to label on line 12
17 	y EJECT controls the title and page listing.
18 	.LOCAL. 	I another local region;
19 	s

NO EJECT only turns off the automatic page
generation; 	it has no effect on .PAGE requests.

20 ?LOOP ■ 6 	
• 21 ;

22 	LDY 171,00P 	t same as LDY 16
0133 determines if the object code is written to the
device/memory.

23 	(etc.) NO OBJ is useful during trial assemblies. .

FEATURE, 	Local 	labels MAY be forward referenced, just
like any other label.

OBJ is NECESSARY when the object code is to
placed in memory.

NOTE, Local labels do not appear in 	the 	symbol 	table
listing. 	Except see Chapter 9.

NUM will auto number the assembly listing instead of
using the user line numbers. NUM will begin at 180
and increment by 1.

r.-

NUM is generally not useful except for final,
"pretty" 	assemblies. 	,

•

•

--46--
--47--

..."-• r 	.

1

•

(7>

Section 4.16 	(.OPT continued)

MUST controls the listing of Macro expansions.
NO MUST will list only the lines within a Macro
expansion which generate object code. 	MLIST
will expand the entire Macro.

Note that NO !MIST is extraordinarly useful
in producing readable listings.

CLIST controls the listing of conditional assembly.
NO CLIST will not list source lines which are
not assembled. CLIST will list all lines within
the conditional construct.

XREF allows the user, when a cross reference has been
specified in the ASH command line, to control
which portions of the source program will be
cross referenced during the assembly.

Any lines of source code between a •OPT NO XREF
and the next suceeding .OPT XREP will not be
cross referenced.

By combining NO XREF and . NO LIST, you can list
and cross reference even extremely large
programs in pieces. Or you might use NO XREF to
avoid indexing entries out of an INCLUDEd file.
XREF and NO XREF are useless and inoperative
(but do not generate errors) If you have not
specified a cross reference file name in the ASM
command line.

NOTE: Unless specified otherwise by the user, all of
the options will assume their default settings. The
default settings for .OPT aret

LIST 	 listing IS produced
ERR 	 errors are reported
EJECT 	 pages are numbered and ejected
NO NUM 	 use programmer's line numbers
MUST 	 all macro lines are listed
CLIST 	 all failed conditionals list
XREF 	 continous cross reference
NO OBJ 	 SEE CAUTION 11111

CAUTION: The OBJ option is handled in a special ways
IF assembling to memory the object default is NO OBJ.
IF assembling to a device the object option is 083.

NOTE: Macro expansions with the NO NUM option will not
be listed with line numbers.

The .PAGE directive allows the user to specify a page
heading. The page heading will be printed below the
page number and title heading.

.PAGE will eject the next page, and prints the most
recent title and page headings.

Examples 	300 	.PAGE "EXECUTE LABEL SEARCH'

Notes The assembler will automatically eject and print
the current title and page headings after 61 lines have
been listed.

Section 4.18

directive: 	.SBYTE

purpose: 	produces "screen" bytes in output object

usage: 	 see .BYTE description, section 4.4

Section 4.17

directive:

purposes

usage:

usage note:

.PAGE

provides page headings and/or moves
to top of next page of listing

•PAGE 	string

no label should be used with .PAGE

--49--

.

Section 4.19

directive, 	.SET

purpose: 	controls various assembler functions

usage: 	 .SET denuml • denum2

The .SET directive allows the user to 	change 	specific
variable 	parameters 	of 	the 	assembler. 	The 	denuml
specify. the parameter to change, 	and 	dcnum2 	is 	the
changed 	value. 	The 	following 	table summarizes 	the
various .SET parameters. 	Defaults for 	each 	parameter
are 	given 	in 	parentheses, 	followed by the allowable
range of values.

dcnuml 	denum2 	 function

0 	 (4) 	1-4 	 sets the .DYTE and .SBYTE
listing format. 1 to 4
bytes can be printed in
the object code field of
the listing,

1 	 (0) 	0-31 	sets the assembly listing
left margin. The speci-
fled number is the number
of spaces which will be
printed before the assem-
bled source line.

2 	 (88) 40-132 	set width for listing,
, 	adjust for your printer.

3 	 (12) 0,12 	form feed select. 	0 implies
no form feed on printer—use
multiple line feeds. 	Any
other used as form feed char.

4 	 (66) 20-255 	number of lines per page for
listing,

5 	 (0) 0-255 	number of spaces from semi-
colon in comment field to
where remainder of comment
is printed,

6 	 (8) 0-$FFFF 	an offset, which is added to
the location counter when
an object byte is stored or
written to disk. You can
thus assemble code for one
address while storing Or
loading it another address.

SPECIAL Warn 	See Chapter 8 for a complete
discussion of the capabilities of .6ET 6

...-50--. .

..
.-----

:
.

r"..

.

number.

I

I

(--)

•

directive, 	.TITLE

Section 4.22

Section 4.20

directive: 	.TAB

purposes 	sets listing "tab stops" for readability

usage: 	 .TAB 	denuml ,dcnum2 ,dcnum3

The 	.TAD 	directive 	allows 	the 	user 	to specify the
starting column for 	the 	listing 	of 	the 	instruction
field, 	the 	operand 	field, 	and 	the 	comment 	field
respectively. 	The defaults are 8,12,20.

,
Examples 	200 	.TAB 16,32,50

...
1200 	.TAB 8,12,20 : 	restores defaults

Section 4.21

purposes 	specify assembly listing heading

usage, 	 .TITLE 	string

The .TITLE directive 	allows 	the 	user 	to 	specify 	a
assembly 	title 	heading. 	The 	title 	string 	will be
printed at the top of every 	page 	following 	the 	page

directives 	.WORD 	 [see also .DBYTE]

purposes 	place 16 bit word values in output object

usage: 	 [label] 	.WORD exp (,exp ...]

The 	.WORD 	and 	.DBYTE directives both put the value of
each following expression into the object code 	as 	two
bytes. 	But where .WORD will assemble the expression(s)
in 	6502 	address 	order 	(least significant byte, most
significant 	byte), 	.DBYTE 	will 	assemble 	the
expression(s) 	in reverse order (most significant byte.
least significant byte).

Generally, 	for 6502 programs, 	.WORD is the more 	useful
of 	the 	two, 	and 	is 	more 	compatible 	with the code
produced by assembled 6502 instructions.

EXAMPLEt 	.DDYTE 	$1234,1,-1
produces, 	12 34 00 01 FP FF

.WORD 	$1234,1,-1
producers 	34 12 01 00 FF FF

--SI--

_..

--this page intentionally left blank---

CHAPTER 51 MACRO FACILITY

A MACRO DEFINITION is a series of source lines grouped
together, given a name, and stored in memory. When the
assembler encounters the corresponding name in the
instruction (opcode, directive) column, the saved lines
will be substituted for the Macro name and assembled.
Effectively, this allows the user to define and then
use new assembler instructions. Depending upon the
code stored in its definition, a macro might be thought
of as either an "extra" directive or a "news opcode.

The process of finding a macro in the table when its
name is used, and then assembling the code it was
defined with, is called a MACRO EXPANSION. The unique
facility of Macro Expansions is that they may have
PARAMETERS passed to them. These parameters will be
substituted for the "formal parameters" during the
expansion of the Macro.

The use (expansion) of a Macro in a program requires
that the Macro first be defined. 	To the set of
directives already discussed in chapter 4, then, must

(Th 	be added two new directives used for defining new
macros,

.MACRO

.ENDM

This chapter will first discuss these two directives,
show how to invoke a macro (cause its expansion) and
then examine the use of formal and calling parameters,
including string parameters.

Section 5.1

directive: 	.ENDM

purpose: 	end the definition of a macro

usage, 	 .ENDM

usage note: 	generally, the .ENDM directive should
not be labelled.

This directive is used solely to 	terminate 	the
definition of a macro. When invoking a macro, do NOT
use this directive. Basically, the concept of macros
requires that all source lines between the •MACRO
directive and the .ENDM directive be stored in a
special section of memory (the macro table). Thus.
encountering an improperly paired .ENDM directive is
considered a severe assembly error. See the
description of .MACRO for further information.

- -52 -
	 --53--

•
Section 5.2

directives

purpose,

usage,

Usage notes

.MACRO

initiates a macro definition

•MACRO macroname

"macroname" may be any valid MAC/65
label. It MAY be the same name as
a program label (without conflict).

.

-54--

Section 5.2 	(.MACRO continued)

EXAMPLE:
20 .MACRO MOVED
21 LOX #5
22 LOOP
23 LDA FROM,X
24 STA TO,X
25 DEX
26 DPI. LOOP
27 .ENDM

The .MACRO directive will cause the lines following to
be read and stored under the Macro name of "macroname".
The definition is terminated with the .ENDM directive.

All instructions except another 'MACRO directive are
valid Macro source lines. A Macro definition can NOT
contain another Macro definition.

A simple example of a MACRO DEFINITION,

10 	.MACRO PUSHXY r The name of this Macro is "PUSHXY" 	 •
11 	When this Macro is used (expanded), the following
12 / instructions will be substituted for "PUSHXY"
13 y and then assembled.
14 	TXA
15 	PHA
16 	TYA
18 	PHA
19 	.ENDM 	s The terminator for "PUSHXY"

SPECIAL NOTE, ALL labels used within a macro are
assumed to be local to that macro. MAC/65 accomplishes
this by performing a "third pass" of the assembly
during macro expansions. Thus, a label defined within
a macro expansion is available to code which follows
the macros but another expansion of the same macro with
the same label will reset the labels value. The action
is similar to the "..0. directive, except that forward
references to internal macro labels ARE legal.

An example follows, on the next page.

The label "LOOP" is local to this macro usage, and yet
it may (if needed) be referenced outside the macro
expansion (although not in another macro expansion).
(Note that if a macro label is only defined once by a
single macro usage, the effect is the same as if the
label were defined outside any macro.) Although the
.LOCAL-produced local regions may be used by and with
macros, the user is limited to a maximum of 62 local
regions. No such restriction applies to the number of
possible local usages of a label in a macro expansion.

--54--
--55--

• 	•
/---\

•
5.3 MACRO EXPANSION, PART 1

As stated above, a macro is expanded when it is used.
And the "use" of a macro is simplicity itself.

To invoke (use, expand--all equivalent words) a macro,
simply place its name in the opcode/directive field of
an assembler line. Remember, though, that macros MUST
be defined before they can be used.

For example, to invoke the two macros defined in
examples in the previous section (5.2), one could
simply type them in as shown and then enter and
assembles

EXAMPLEt
2000 ALABEL PUSHXY
2010 y and pushxy generates the code
2020 ; 	TXA PHA TYA PHA
2030 y
2040 MOVE6
2050 ; 	similarly, MOVE6 is used
2060 JMP LOOP
2070 	and LOOP refers to the label
2080 I 	defined in the MOVE6 macro 	

/Th

Note that the use of a label on the macro invocation is
optional. The label is assigned the current value of
the location counter and is not dependent upon the
contents of the macro at all.

There are many more "tricks" and features usable with
macros, but we will continue this discussion after an
examination of macro parameters as used in a macro
definition.

(Th
. 7 .

--56--

5.4 MACRO PARAMETERS

Macro parameters can be of two typess expressions
(which are evaluated as 16 bit words) or strings. The
parameters are passed via the macro expansion
(invocation, use, etc.) and are stacked in memory in
the order of occurance. A maximum of 63 parameters can
be stacked by a macro expansion, including expansions
within expansions.

However, 	before 	a parameter can be used in an
expansion, there must be a way of accessing it in the
MACRO DEFINITION. Parameters are referenced in a macro
definition by the character "1" for expressions and the
characters "1$" for strings. The value following the
character refers to the actual parameter number.

SPECIAL NOTE: The parameter number can be represented
by a decimal number (e.g., 12) or may be a label
enclosed by parentheses (e.g., 1$(LABEL)). Of course,
strings may be similarly referenced, as in 1$(INDEX) or
1$1.

Examp les s

10 	LOA 	%)11 ; get the high byte of parameter 1.
15 	CMP 	(111 ,X) 1 yes, that really is number 11.
20 	.BYTE 12-1 	/ value of parameter 2 less 1.

NOTE the above is NOT equivalent to using
parameter U. Parameter substitution
has highest precedence!

25 SYMBOL 	SYMBOL + 1
30 	LOX 	I -1(SYMBOL) I see the power available?

40 	.BYTE 151,152,0 	string parameters, ending 0.

Remember, in theory the parameters are numbered from 1
to 63. In reality, the TOTAL number of parameters in
use by all active (nested) macro expansions cannot
exceed 63. This does NOT mean that you can have only
63 parameter references in your macro DEFINITIONS. The
limit only applies at invocation time, and even then
only to nested (not sequential) macro usages.

--57--

SPECIAL NOTE, In addition to the 	"conventional"
parameters, referred to by number, parameter zero (10)
has a special meaning to MAC/65. Parameter zero
allows the user to access the actual NUMBER of real
parameters passed to a macro EXPANSION.

This feature allows the user to set default parameters
within the Macro expansion, or test for the proper
number of parameters in an expansion, or more. The
following example illustrates a possible use of 10 and
shows usage of ordinary parameters as well.

EXAMPLE/

10 MACRO BUMP
11 ;
12 ; This macro will increment the specified word
13
14 The calling format is,
15 / 	 BUMP address C .increment 3.
16 	If increment in not given, 1 is assumed
17
18 	.IF 20■0 .OR 10)2
19 . .ERROR "BUMP: Wrong number of parameters"
20 	•ELSE
21 ;
22 this is only done if 1 or 2 parameters
23 g
24 	.IF 10>1 I did user specify "increment" ?
25 	this is assembled if user gave two parameters
26 	LDA 11 	add "increment' to "address".
27 	CLC
28 	ADC S (52 	low byte of the increment
29 	STA %1 	/ low byte of result
30 	LDA 11 +1 high byte of location
31 	ADC I)12 f add in high byte of increment
32 	STA 11 +1 / and store rest of result
33
34 	•ELSE
35 / this is assembled if only one parameter given
36 	. INC 51 	I just increment by 1.
37 	8NE SKIPHI ; implicitly local label
38 	INC 11 +1 p must also increment high byte
39 SKIPHI
40 	.ENDIF 	p matches the 	10)1 (lin. 24)
41 	.ENDIF 	/ matches the .IF of line 18
42 	•ENDM 	7 terminator.

--58-- 58--

. •

5.5 MACRO EXPANSION, PART 2 	 ■ •

We have shown how macro definitions may include
specifications 	of 	particular 	parameters 	(the
specifications might also be called "formal
parameters"). This section will show how to pass
actual parameters (equivalently "value parameters',
"calling parameters", etc.) to the definition.

The concept is simple, on the same line as the macro
invocation (by use of its name, of course) and
following the macro's name, the user may .place
expressions (or strings, see section 5.6). MAC/65
simply assigns each of these values a number, from 1 to
63, and then, during the macro expansion, replaces the
formal parameters (tl, 12, i(label), etc.) with the
corresponding values.

Does that sound too complicated? 	Internally, it is.
Externally, it is as easy as thiss

EXAMPLE: .

Assume that the BUMP macro has been defined (as above,
section 5.4), then the user may invoke it as needed,
thus,

100 ALABEL BUMP A.LOCATION
110 INCH • ■ 7
120 	BUMP A.LOCAT/ON,3
130 	BUMP A.LOCATION,INCR-2
140 	SUMP
150 	BUMP A.LOCATION,INCR.7
160 A.LOCATION .WORD 0

notes lines 140 and 150 will each cause the
BUMP error to be invoked and printed

Of course, you can also do silly things, which will no
doubt produce some pretty horrible (and hard to debug)
code:

170 	BUMP INCR.A.LOCATION
will try to increment address 7 by something

180 BUMP PORTS
assuming that PORTS is some hardware port,
strange and wonderful things could happen

--59--

• •

A Macro string example:

10 	.MACRO PRINT
11 y
12 ; This Macro will print the specified string,
13 ; parameter 1, but if no parameter string is
14 y passed, only an EOL will be printed.
15 ;
16 ; The calling format lit PRINT [string]
17 ;
18 	.IF 10 •. 1 ; is there a string to print?
19 	.IMP PASTSTR 	yes, jump over string storage
20 STRING .BYTE 6$1,EOL ; put string here.
21
22 PASTSTR
23 	LDX •)STRING I get string address into XV/
24 	LDY :STRING ; for JSR to 'print string'
25 JSR STRINGOUT
26 .ELSE
27 I 	no string.. .just print an SOT..
28 LDA •EOL
29 JSR CHAROUT.
30
31 	.ENDIF
32 	aNDM 	 terminator.

To invoke this macro, then, the following calls would
be appropriate:

100 	PRINT "this is a string"
110 	PRINT
120 	PRINT MESSAGE

Line 120 is strange: The macro facility assumes that
"MESSAGE" is a string (because of its usage), and so
will print it exactly as if it had been placed in
quotes. However, if the label MESSAGE is not defined
elsewhere, the line will also generate an 'Undefined
Label" error. Generally, we do not suggest using this
form. Use the quoted string instead.

--61--

5.6 MACRO STRINGS

String parameters are represented in a macro definition
by the characters "W. All numeric parameters have a
string counterpart, not all of which are useful. All
string parameters have a numeric counterpart .(their
length).

As a special case, 1$0 always returns the macro NAME.

The following table shows the various string and
numeric values returned for a given parameters

As appear. in 	• string returned 	numeric value
Macro calls 	 (in quotes): 	returned:

"A String 1 2 3" 	"A String 12 3" 	length of string
NUMERICSYMBOL 	"NUMERICSYMBOL" 	value of label
SYMBOL+1 	 "SYMBOL" 	 value of expr
164

	

	 the string of parameter 4 value of orginal 	/--1 	"----1
(above would be used by a macro calling another macro)

-LABEL 	 "LABEL 	 value of expr
GEORGE•HARRY+PETE undefined 	 va1ue of expr
.DEF CIO 	 'CIO" 	 value of expr
2 + 2 • 65 	 undefined 	 value of expr

t--

--60--

5.7 	SOME MACRO HINTS

Each 	person 	will 	soon 	develop 	his/her own style of
writing macros, but 	there 	are 	certain 	common 	sense
rules that we all should heed,

A. When a macro is defined, its entire definition must
be 	stored 	in memory (in a macro table). 	Since memory
space is obviously finite, 	it is a good 	idea 	to 	keep
macros 	as short as possible. 	One way to do this is to
avoid putting comments (remarks) within the body of the
macro. 	If you do document your macros (and we hope you
do), place the comments in the file BEFORE 	the 	.MACRO
directive. 	The 	assembler will then do nothing at all
with them and they will occupy no additional space.

B. Don't use a caller's macro parameter unless you are
sure that it is there. 	Using 	a 	parameter 	that 	the

, 	caller 	left 	out will produce a MACRO PARAMETER error.
Depending upon the macro definition, this 	may 	or 	may
not 	also 	produce 	undesired 	results. 	An example of
unsafe coding;

.IP 10)1 	.OR 12-0
.WORD *1

.ENDIP

The danger here occurs if the caller invokes the 	macro
with only one parameter. 	Since 12 is non-existent (and
hence 	undefined), 	the sub-expression "12..0" is indeed
true and the effect of "IOW is nullified. 	Of course,
the lack of 	parameter 	2 	will 	produce 	a 	"PARAMETER
ERROR', 	but 	it 	will 	already 	be too late. 	A better
coding of the above would bet

.IP 10)1
.IP 124)0

.WORD *1
.ENDIF

.ENDIP

C. Even though labels defined within macros are 	local
to 	each 	invocation, 	they are still "visible" outside
the macro(s). 	Thus, it might be a good idea to have 	a
special 	form 	for 	labels 	defined in macros and avoid
that form outside macros. 	The macro 	library 	supplied
with 	MAC/65 	uses 	labels 	beginning with -e. as local
labels to macros.

•
CAUTION, 	You should NOT define a label beginning 	with

a question mark inside a macro. 	Neither should you use
a .LOCAL directive within a macro. 	(You may USE labels
that start with question marks, so long 	as 	you 	don't
DEFINE them within the macro.)

"
--62--

•

,

.

'

5.8 	A COMPLEX MACRO EXAMPLE

The 	following set of macros is designed to demonstrate
several of the points made in the 	preceding 	sections.
Aside 	from 	that, 	though, 	it is a good, usable macro
set. 	Study it carefully, please. 	(The 	line 	numbers
are 	omitted for the sake of brevity. 	Any numbers will
do, of course.)

7
; the first macro, 	"CH", is designed to load an
1 	IOCB pointer into the X register. 	If passed a
7 value from 0 to 7, 	it assumes it to be a constant
; 	(Immediate) channel number. 	If passed any other
; value, 	it assumes it to be a memory location which
1 contains the channel number.
1
I NOTE that these comments are outside the body of
1 the macro, thus saving valuable table space.
/

.MACRO @CH

	

IF 	11)7 : where is channel number?

	

LDA 	11 	; 	channel 0 is in memory cell

	

ASIA 	t 	so load it and

	

ASIA 	I multiply it

	

ASIA 	; 	16 via

	

ASIA 	; 	these shifts

	

TAX 	; 	then move it to X register
.ELSE
LDx •11'16 ; channel 1 times 16 goes in X
.ENOTF
.ENDM

1
; this next macro, 	"@CV", is designed to load a
; Constant or Value into the A register. 	If
I passed a value from 0 to 255, 	it assumes it
7 to be a constant (immediate) value. If passed
t any other value, it assumes it to be a memory
1 location (non-zero page).
/

.MACRO @CV

	

.1F 	11(256 	; 	is this a constant value?

	

LDA 	111 	: yes...so load it immediately
.ELSE

	

LOA 	11 	I no...so get it from memory
.ENDIP
.ENOM

--63--

rTh

•

/ The third macro is "@FL", designed to establish
r a filespec. If passed a , literal string, @FL
I will generate the string in line, jumping around
r it, and place its address in the IOCB pointed to
r by the X register. If passed a non-zero page
label, @FL assumes it to be the label of a valid

; filespec string and uses it instead.

.MACRO @FL

./F 11(256 r is this a literal string?
JMP *+11+4 	yes...so jump around the string

11 1, 	•BYTE 161,0 	...and store the string here
LDP 	 I then get address of the string
STA ICBADR,X ; put in IOCB's address field
LOA t>@F 	t also high byte of address
STA /CBADR+1,X
•ELSE
LOA #<11 	I not a literal string
STA ICBADR,X ; but still get its address
LDA t>11 	t (both bytes)
STA ICBADR+1,X / to IOCB's address field
.ENDIF
•ENDM

; The main macro here is "X10", a macro to
I implement a simulation of BASIC's XIO command.
1 The general syntax of the usage of this macro ist
. XIO command,channel C,auxl,aux23 (,filespec)

;
; where channel may be a constant from 0 to 7
; 	or a memory location.
/ where command, auxl, and aux2 may be a constant

from 0 to 255 or a non-zero page location
t where filespec may be a literal string or

a non-zero page location
; if auxl and aux2 are omitted, they are assumed

to be zero (you may not omit aux2 only)
if the filespec is omitted, it is assumed to

be "St"

.MACRO X/0

.IF 10(2 .OR 10>5 ; just checking

.ERROR "XIOt wrong number of parameters"

.ELSE
@cH 12 	process the chnnnel number
@CV 11 	; and the XIO command number
STA ICCOM,X ; ...putting command t in /OCR
.1F 10>=4 p 4 or 5 arguments given?
@CV 13 	p yes...so process
STA ICAUX1,X ; aux 1
@CV 14
STA ICAUX2,X 	and aux 2
.ELSE 	y 2 or 3 arguments given
LOP. 10 ; so assume value of zero
STA ICAUX1,X ; for aux 1
STA ICAUX2,X y and aux 2

.ENDIF

./F 10.2 .012 10..4 ; was filename given?
en, 	no...assume name is "St"

.ELSE 	; but if yes...
@FPTR . ■ 10 	I get parameter number of name

@FL 16(@FPTR) p and process it
.ENDIF
JSR C/O 	p call the OS

.ENDIF

.ENDM

--65--

/Th

Did you follow all that? The trick is that, the way
"XIO" is specified, it is legal to pass it 2, 3, 4, or
5 arguments: but each of those numbers represents a
unique combination of parameters, to wits

X/0 	command,channel
XIO 	command,channel,filespec
XIO 	command,channel,auxl,aux2
XIO 	command,channe1,auxl,aux2,filespec

This is not a trivial macro example. Perhaps you will
not have occasion to write something so complex. But
MAC/65 provides the tools to do many things if you need
them.

SPEC/AL NOTE: Appendix B contains a fairly complete set
of I/O macros which you may typo in and use.

ALSO, You may inquire about the availability of the OSS
MAC/65 Programmers' Aid Disk, which should include all
the macros in Appendix B and many more.

CHAPTER 6, COMPATIBILITY

There arie many different 6502 assemblers available, and
it seems that each has a few foibles, bugs, or whatever
that are uniquely its own (and, of course, they are
called 'features by their promoters). Well, MAC/65 is
no different.

This chapter is devoted to telling you of some of the
things to watch out for when converting from another
6502 assembler to MAC/65. We will restrict ourselves
to such things as directives and operators. We will
NOT go into a discussion of how to convert the actual
6502 opcodes (equivelentlyt instructions, mnemonics,
etc.). We consider it mandatory that any good 6502
assembler will follow the MOS Technology standard in
this regard.

Example: We know of some antique 6502 assemblers that
specify 	the various addressing modes via special
opcodee. 	Thus the conventional "UV, t3" 	becomes
"LDAIMM 3' and "LDA (ZIP),Y" becomes "LDA/Y ZIP".

	

f---,, 	 Unfortunately, there was never any standard established

	

: 	 for such distortions, so we shall ignore them as
antique and outmoded. In any case, unless you are
entering a program out of an older magazine, you are
unlikely to run into one of these strange beasts.

The rest of this chapter pays homage to our birthright.
MAC/65 	is 	a 	direct 	descendant 	of 	the Atari
assembler/editor cartridge (via EASMD). As much as
possible, we have tried to keep MAC/65 compatible with
the cartridge. Unfortunately, in the interest of
providing a more powerful tool, a few things had to be
changed. The next section of this chapter, then,
enumerates these changes.

6.1 ATARI'S ASSEMBLER/EDITOR CARTRIDGE

This section presents all known functional differences
between the Atari cartidge and MAC/65. Obviously,
MAC/65 also has many more features not enumerated here,
but they will not impact the trensferrance of code
originally designed for the cartridge (or, for that
matter, EASMD).

--66--
--67--

6.1.1 .OPT OBJ / NOOBJ

By default, the Atari cartridge produces object code,
even when the destination of the object is RAM memory.
This is a dangerous practice, at bests it is too easy
to make a mistake in a program and write over DOS, the
user's source, the screen memory, or even (horror of
horrors) some of the hardware registers.

MAC/65 makes a special case of object in memoryt you
don't get it unless you ask for it. You MUST have a
*.OPT OBJ" directive before the code to be generated or
the code will not be produced.

6.1.2 OPERATOR PRECEDENCE

The Atari cartridge assigns no precedence to arithmetic
operators. MAC/65 uses a precedence similar to
BASIC's. Most of the time, this causes no problems:
but watch out for mixed expressions.

Examples 	LDA 4LABEL-3/256
seen as 	LOA f(LABEL-3) / 256 by the cartridge
seen as 	LDA •LABEL - (3/256) by MAC/65

6.1.3 THE .IF DIRECTIVE

The implementation of .IF in the cartridge is clumsy
and unusable. MAC/65's implementation is More
conventional and much more powerful. Rather than try
to offer a long example here, we will simply refer you
to the appropriate sections of the two manuals.

6.1.4 ZERO PAGE FORWARD REFERENCES

MAC/65 can not properly assemble a forward reference to
a zero page label (usually, you will get a PHASE
ERROR). The Atari cartridge generally can, but it has
other limitations on addressing modes which MAC/65 does
not suffer under.

You can usually avoid phase errors simply by moving
your equates for zero page locations to the head of
your assembled code.

CHAPTER 7t ADDED 65CO2 INSTRUCTIONS

MAC/65, 	as 	originally 	produced, 	supported 	the
"standard" 6502 instruction set as well as the
directives and addressing mode designators recommended
by MOS Technology (the originators of the 6502 chip).

This version of MAC/65 supports all features of the
original version along with added support for one of
the more popular enhanced versions of the 6502 chip.
In particular. MAC/65 supports all new instructions and
addressing modes available on the 65CO2 chip as
produced by NCR Corporation.

We describe here the primary added addressing mode, the
instructions with variants added, and the completely
new instructions.

But before we start, we should note that these
instructions will only work properly on your computer
if you have installed an NCR 65CO2 in place of the 6502
which came in the machine as purchased. Also, remember
that a program using these instructions may work great
in your machine. It will not work properly in your
friend's machine unless he/she also installs a 65CO2.

(Th

--69--

7.1 A Major Added Addressing Mode

The 	standard 	6502 chip supports two forms of indirect
addressing for what might 	be 	considered 	its 	primary
instructions. 	The forms appear in assembly listings as

/Th

7.2 	Minor Variations on 6502 Instructions

The "BIT" instruction 	has 	added 	two 	new 	addressing
modes, 	and 	"JMP 	has 	added 	one new mode. 	They are
described here individually,

Ida 	(indirect,X)
and

Ida 	(indirect).Y
Original allowed forms of 6502 BIT instruction were,

BIT 	absolute
(where 	"Ida" 	is 	only 	one of several valid mnemonics
that can be used with these addressing modes).

BIT 	zeropage
New 65CO2 forms available are:

BIT 	absolute,X
The latter of these modes, often 	referred 	to 	as 	the BIT 	zeropage,X
"indirect-Y" 	mode, 	is 	perhaps 	the 	most 	useful and
flexible of all 6502 addressing modes. 	And, 	yet, 	it
suffers 	from one flaw, it ties up two registers (A and
Y). 	And, as importantly, probably a full 50% 	or 	more
of 	the 	time the Y-register is loaded with zero before
instructions in this mode are executed.

The ability to use the X register as in index with 	the
BIT 	instruction greatly enhances its power for testing
tables, 	etc. 	The "indexed-x" address modes function as
they do for other 6502 instructions (e.g.,LDA and CMP).

.

Original allowed forma of 6502 JMP instruction were:
The NCR 65CO2 instruction set as 	supported 	by 	MAC/65
provides 	a 	help 	here: 	you 	may 	code 	instructions
allowing Indirect-Y addressing in 	"Indirect" 	mode 	as

JmP 	absolute
JMP 	(indirect)

New 65CO2 form available is:
well. 	With 	Indirect 	mode, 	the 	assembler format is .IMP 	(indirect.X)
simply •

(---N Ida 	(indirect) 	 - Note that the JMP instruction alone in 	both 	the 	6502
where, as with Indirect-Y, the indirect 	location 	must
be in zero page.

• and 	65c02 Instructions sets uses an absolute (i.e., 	16
bit, 	2 byte) address for its indirect value. 	The 	new
"indirect-X" 	form 	is 	no 	different, 	the 	location

Generally, the effect of using this instruction will be
the same as coding the sequence,

. specified 	as the indirect address may 	be 	anywhere 	in
memory.

LDY 	•0
Ida 	(indirect),?

EXCEPTING 	that 	the 	Y-regiater 	remains 	intact 	and
untouched and may be used for other purposes. .

The following, then, are ALL of the 65CO2 	instructions
which allow and support this new addressing modes

ACC (indirect) 	 t ADd with Carry

This 	"indirect-X" address mode is unique and new. 	Its
effect 	is 	as 	follows, 	add 	the 	contents 	of 	the
X-register 	to the ADDRESS (not the contents) specified
by the given indirect address; use the 	result 	as 	the
address 	of the true operand for this instruction: JuMP
to the address contained 	in 	the 	word-sized 	location
accessed via the true operand.

AND (indirect) 	 / bitwise AND
CMP (indirect) 	 7 compare with A-reg An example is in order:
EOR (indirect) 	 i Exclusive OR
LDA (indirect) 	 / LoaD the A-register TABLE 	.W6RD 	SUB1,5UB2,SUB3
ORA (indirect) 	 / inclusive OR ...
SBC (indirect) 	 / SuBtract with Carry
STA (indirect) 	 1 STore the A-register

LDA 	value 	; assume that "value"
i 	contains 0,1, 	or 2

ASL A 	 7 double the value
MINDER: while the "indirect" location may be any zero
page location, you should probably restrict yourself to
the available locations documented in the DDT manual.

ThX 	 ; 	...to X-register
JMP (TABLE,X) 	7 and go to SUB1, SUB2,

i SUB3 depending on "value"

(--*

--70--

--71--

• 	•

(Th

7.3 ALL-NEW 65CO2 Instructions

We detail here, in what we hope are logical groupings,
the 65CO2 instructions which are truly *new" to the
6502 world.

7.3.1 BRA

Mnemonic, BRA
-

Read as, 	BRAnch

Formats 	BRA addr
where addr must be in the range •-126
to ++129 (* is the current value of
the location counter)

Comments, 	BRA joins the Branch family (RN?., BEO, BMI,
etc.) 	and adds the powerful capability of
ALWAYS branching. It thus becomes
equivalent to a JMP instruction with the
advantage that it occupies one less byte in
memory and is inherently relocatable. Its
address range is restricted in a fashion
identical with the other members of the
"branch" family.

7.3.2 DEA and INA

Mnemonics, DEA
INA

Read ass 	DEcrement Accumulator
INcrement Accumulator

Formats, 	DEA
INA

Comments, These simple instructions add a capability
long lacking in the 6502. Until now, if
you wished to change the contents of the
accumulator by one, you had to either use
TAX/INX/TXA (or something similar) or
CLC/ADC (or sec/mac), three byte
substitutes for what should (and now is) a
single byte instruction.

Processor status flags (i.e., N and 2),
timings, etc., are all identical to the
very similar INX/INY/DEX/DEY set of
instructions.

7.3.3 NIX, PHY, PLX, and PLY

Mnemonics: NIX
PHY
PLX
PLY

Read as: 	PueH X onto CPU stack
Pus!! Y onto CPU stack
Pull, X from CPU stack
Pull, Y from CPU stack

Formats, 	NIX
PH?
PLX
PLY

Comments, 	Again, these instructions are provided as
short cuts for the cumbersome sequences
necessary on the standard 6502. As an
example, NIX can replace a sequence of
instructions as complex as this,

STA temp
TXA
PHA
LDA temp

By giving you direct access to the stack
from the X and Y registers, it is possible
and desirable to right more compact and
more relocatable code. Processor status
flag usage, timings, etc., are identical to
the very similar PHA and PLA instructions.

--72-- 	 --73--

r--"N •

7.3.4 STZ

Mnemonic: STZ

Read As: 	STore Zero

Formats: 	STZ absolute
STZ absolute,X
STZ zeropage
STZ zeropage,X

Comments, Yet another short cut, STZ simply replaces
the sequence

LDA 40
• STA address

with the difference that it does not affect
the contents of the A register. In fact,
to properly simulate this instruction on an
ordinary 6502, the following code would be
needed in the general case:

PHA
LDA 40

	

STA address 	 • •
PLA

7.3.5 TRB and TSB

Mnemonics: TRB
TSB 	 •

Read As: 	•Test and Reset Bits
Test and Set Bits

Formates 	TRH absolute .
TRB zeropage
TSB absolute
TSB zeropage

Comments: These instructions have many uses, not the
least of which would be synchronization of
background and foreground
(interrupt-driven) routines. In boolean
terms, the instructions might be thought of
thus,

• TRBI Memory In (Not A) and Memory
TSBI Memory t ■ A or Memory

In words, vs might describe the operation
of these instructions as follows,

- -74 - -

For TRO: The complement of the contents of
the Accumulator is bit-wise AND-ed with the
contents of the memory cell addressed by
this instruction (either an absolute or
zero-page location). The result of this
AND-ing is placed back in the addressed
memory cell.

For TSB I The contents of the Accumulator is
bit-wise OR-ed with the contents of the
memory cell addressed by this instruction.
The result of this OR-ing is placed back in
the addressed memory cell.

If the result of the AND-ing or OR-ing is
zero, the Zero processor status flag is
set. The N and V flags are set to the
contents of bits 6 and 7 (similar to the
usage and results of the BIT instruction)
of the addressed memory cell as those
contents were BEFORE the bit-wise operation
took place.

Examples:
FLAG .BYTE 3
TEST .BYTE SFF

LDA
TRB FLAG 	resets all bits!

LDA 40
TSB TEST / just tests value

--75--

•

CHAPTER SI PROGRAMMING TECHNIQUES WITH MAC/65

This chapter will present you with a couple of hints
about how to use MAC/65 to more advantage.

8.1 Memory Usage by MAC/65 and DDT

---this page intentionally left blank--

The following memory locations are used by MAC/65
and/or DDT for the purposes shown:

range of 	used by
addresses 	MAC/65 DDT used for

$80-$AF 	yea 	yes pointer, and temporaries
$110-$1)3 	yes 	no 	pointers and temporaries
$1)4-$FF 	yes 	no 	floating point registers, etc.
$100-$1FF 	yes 	yes normal 6502 CPU stack
$3FD-$47F 	no 	yes buffers and display area
$480-$57F 	yes 	yes buffers and work area
$580-$67F 	yea 	no 	input buffers, etc.
"size 	yes 	• 	program text, etc.

Note that "size' refers to the memory area delineated
hy the lowest and middle numbers displayed when the
"SIZE" command is used from the MAC/65 editor. The •
in DDT's column indicates that DDT saves MAC/65's zero
page memory (and other, related, locations) in the area
actually shown to be part of the 'size' memory.

The worst implication of the memory map above
(especially for Atari BASIC users) Is that page 6 is
NOT completely available to you. Since many magazine
articles assume that page 6 is available, they will not
run AS IS under MAC/65 and DDT. But see the next
section for methods to use if you MUST use page 6.

--77--

8.2 Assembling With An Offset; .SET 6

In Section 4.19, we noted that the assembler directive
".SET 6,value could be used to specify an additive
offset for the storage address vis-a-vis the location
counter address. In this section, we present a method
for using this capability in a practical sense.

Let us assume that we wish to assemble a small program
which will reside in page 6 ($600 through $6FF). The
program which we will assemble is presented here,

10 	'■ $600
20 COL0R4 	$2C8
30;
40 START
50 	PLA • 	I remove count of parameters
60 	CMP 90 	; any parameters?
70 	BE0 • 	I if yes, loop forever
80 	LDA COLOR4 get current background color
90 	CLC
100 	ADC 9$10 	I change to next hue
110 	STA COLOR4 	...by changing shadow reg
120 	INC COUNT 1 and count the number of times
130 	RTS
140 COUNT 	.BYTE 8 	; just a simple counter
150 	.END

If you assemble this routine, you shoud get an error
free assembly. (And those of you who are BASIC users
will recognize this as a routine callable from Atari.
BASIC, thanks to the PLA and check on number of
parameters at the beginning.)

But it is designed to reside in page 6. What can we
do? Answer, simply add the following two lines to the
listing,

12 	.OPT OBJ vwe do want object code
14 	.SET 6,63000 ; and we will offset

Now use the "DDT" command to enter DDT. 	From DDT,
enter the command

M 360006000080 [RETURN]
which will move $80 (120) bytes from location $3600 to
location $600. Use the command

* 0600 [RETURN]
to view the contents of locations $600 and beyond. Use
the up and down arrows (remember, WITHOUT pushing CTRL)
to view the code. to and behold, your code has been
successfully deposited where you wanted it, waiting for
you to debug.

Some final notes on this subject: MAC/65 will generate
this "offset" kind of code either directly to memory
(as we did here) or to an object file (on disk,
presumably). When the file is reloaded (via MAC's
BLOAD command or via some load command from the DOS you
are using), it will be loaded at the address shown in
the listing. It is your responsibility to then somehow
move it to the desired location. The technique is not
necessarily easy, but using these methods you can
overwrite DOS or even produce code designed to run in
the cartridge space. In the latter case, you may wish
to use a negative offset with .SET 6. This is
perfectly legal and reasonable.

Now, if you assemble this code, you will notice that
the addresses shown start at $3600. And, indeed, the
assembler 	is placing the code In memory at the
addresses shown. But look at line 120. 	Notice that
the object code generated does NOT show that location
$3612 is being incremented) Instead, location $0612 is
affected. Also note that in the symbol table listing
START is shown to be at location $600 and COUNT at
$612.

(7, 	tTh

--78-- 	 --79--

•
8.3 Making MAC/65 Even Faster

If you .INCLUDE a file consisting ONLY of equates
and/or macro definitions (NOT macro callal), there is a
technique you can use which will speed up assembly
somewhat.

In particular, since equates need be made only once and
macros need be only defined once, there is no reason to
read such .INCLUDED files on pass two. The following
code shows a workable techniques

• 0
PASS 	PASS+1 s do this only once per assembly

.IF PASS-1

.INCLUDE flDsequatesfile

.ENDIF
• beginning

Why this works: Normally, an undefined label has a
value of zero. The "..." directive, however, causes a
mildly strange thing to happens an undefined label used
on the right side of "..0 takes on the current value of
the location counter. Bence the need for the " 0"
line at the beginning of the above example.

In any case, thanks to this mechanism, the first time
the second line is assembled (in pass 1), PASS takes on
a value of 1 (of course, the line also generates an
"undefined label" error, but such errors are not
printed in pass 1). The next time it is assembled,
PASS receives a value of 2. Simple and neat.

Note that if the "..." used in the second line above is
placed ahead of any "".." (or ".ORG") lines, then the
first line shown is not needed, since the location
counter is assumed to start at zero unless told
otherwise.

(--

Appendix At System Equates

We present here a listing of certain system locations
which we find useful and necessary when programming on
the Atari Computer.

Many of the equates ehown here are noted as applying to
DOS XL. Generally, if you are working with system
resources (such as IOCB's and CIO and such), the equates
will be identical for Atari DOS. We have tried to
specially mark the locations which apply only to DOS XL
(especially batch execution and the command line).

Some of the labels on these equates may vary slightly
from those used by Atari (in the operating system
listings) or in published books (such as "Mapping The
Atari", from Compute! books). The differences are
minimal (e.g., ICAX1 instead of ICAUX1).

You may type in this entire listing and SAVE the result
to disk or tape. If you save it to disk, you may later
.HICIA1DE it for use by your program(s). If you save it
to disk, you will have to merge it with (or append it
to) your programs.

You may also simply use this listing as a reference,
typing in only the equated labels that your program
actually uses.

(The listing begins on the next page.)

--80--

1• 	• 	

1000 	•PAGE "OSS SYSTEM EQUATES FOR ATARI"

	

1010 	y
1020 : 	Recommended File Name, 	SYSEQU.M65
1030 	p
1040 	t
1050 / I/0 CONTROL BLOCK EQUATES
1060 	;
1065 SAVEPC . • 	I SAVE CURRENT ORO
1067 	:
1070 	$0340 	;START OF SYSTEM IOCBS
1075 10C13
1080 y
1090 ICHID .DS 1 	:DEVICE HANDLER IS (SET BY OS)
1100 ICDNO .DS 1 	:DEVICE NUMBER (SET BY OS)
1110 ICCOM .DS 1 	WO COMMAND
1120 /CSTA .DS 1 	/I/0 STATUS
1130 ICBADR .DS 2 	;BUFFER ADDRESS
1140 ICPUT •DS 2 	;DB PUT ROUTINE (ADR-1)
1150 ICBLEN .DS 2 	;BUFFER LENGTH
1160 ICAUX1 	.DS 1 	;AUX 1
1170 ICAUX2 .DG 1 	;AUX 2
1180 ICAUX3 .DS 1 	;AUX 3
1190 ICAUX4 •DS 1 	/AUX 4
1200 ICAUX5 .DS 1 	:AUX 5
1210 ICAUX6 .DS 1 	/AUX 6
1220 ;
1230 IOCBLEN ■ *-IOCB ;LENGTH OF ONE IOCB
1240 	1
1250 r IOCB COMMAND VALUE EQUATES
1260 	;
1270 COPN ■ 	3 	:OPEN
1280 CGBINR ■ 7 	;GET BINARY RECORD
1290 CGTXTR . 5 	;GET TEXT RECORD
1300 CPBINR ■ 11 	;PUT BINARY RECORD
1310 CPTXTR . 9 	;PUT TEXT RECORD
1320 CCLOSE . 12 	:CLOSE
1330 CSTAT ■ 13 	;GET STATUS
1340 	/
1350 / DEVICE DEPENDENT COMMAND EQUATES FOR FILE MANAGER
1360 :
1370 CREN ■ 	32 	' 	;RENAME
1380 CERA . 	33 	;ERASE
1390 CPRO ■ 	35 	;PROTECT
1400 CUNP ■ 	36 	tUNpROTECT
1410 CPOINT • 37 	:POINT
1420 CNOTE ■ 38 	;NOTE 	.
1430 p
1440 ; AUX1 VALUES REOD FOR OPEN
1450 	1
1460 OPIN m 	4 	;OPEN INPUT
1470 OPOUT . 8 	;OPEN OUTPUT
1480 OPUPD ■ 12 	;OPEN UPDATE
1490 OPAPHD . 9 	;OPEN APPEND
1500 OPDIR ■ 6 	;OPEN DIRECTORY

	
'

1510 p

1520 	.PAGE
1530 ;
1540 	EXECUTE FLAG DEFINES
1550 ;
1560 EXCYES 	$80 	: EXECUTE IN PROGRESS
1570 EXCScR $40 	I ECHO EXCUTE INPUT TO SCREEN
1580 EXCNEW . $10 	I EXECUTE START UP MODE
1590 EXCSUP $20 	y COLD START EXEC FLAG
1600 :
1610 ; MISC ADDRESS EQUATES
1620 y

1630 CPALOC 	$0A 	t POINTER TO CP'
1640 WARMST 	$08 	WAR, START (0.COLD)
1650 MEHL° 	$02E7 	I AVAIL MEM (LOW) PTR
1660 MEMTOP 	$02E5 y AVAIL MEM (HIGH) PTR
1670 APPMHI 	$0E 	: UPPER LIMIT OF APPLICATION MEMORY
1680 INITADR 	$02E2 	ATARI LOAD/INIT ADR
1690 GOADR $02E0 	; ATARI LOAD/G0 ADR
1700 CARTLOC $DFFA CARTRIDGE PUN LOCATION
1710 CIO . 	$E456 	;CIO ENTRY ADR
1720 EOL 	$90 	t END OF LINE CHAR
1730 ;
1740 	CP FUNCTION AND VALUE DISPLACEMSNT
1750 	(INDIRECT THROUGH CPALOC)
1760 ; 	 IE. (CPALOC),Y
1770
1780 CPGNFN 3 	/ GET NEXT FILE NAME
1790 CPDFDV 	$07 	DEFAULT DRIVE (3 BYTES)
1800 CPBUFP 	$0A 	CMD DUFF NEXT CHAR POINTR (1 BYTE)
1810 CPEXFL • $08 	I EXECUTE FLAG
1820 CPEXFN 	$0C 	; EXECUTE FILE NAME (16 BYTES)
1830 CPEXNP 	$1C 	; EXECUTE NOTE/POINT VALUES
1040 CPFNAM . $21 	FILENAME BUFFER
1850 RUNLOC 	$30 	; CP/A LOAD/RUN ADR
1860 CPCMDB 	$3? 	t COMMAND BUFFER (60 BYTES)
1870 CPCMDGO 	$F3
1880 :
1890 	 SAVEPC t RESTORE PC
1900 ;

--83--

Appendix Bt Some Useful Macros

In the pages which follow, we present the listings of
several macros. These macros are designed to make it
easy for you to perform Input/Output operations. If you
type all of them in exactly as shown, you will have a
useful macro library.

---this page intentionally left blank...—.

We suggest that you type them in and then SAVE them (to
' disk or tape). If you save them to disk, you can later

use •INCLUDE to allow your program access to their ease
and power. If you save them to tape, you will have to
merge them with your program in memory in order to use
them.

• CAUTION: These macros use many of the equates given in
the SYSTEM EQUATES listing of Appendix A. 	You may
either .INCLUDE the entire set of equates as presented
or simply type in the ones which these macros need.
(You can find out which labels they need by assembling
your-program without the equates. The undefined labels
will causes errors during the assembly.)

I 	./---‘• Before we present the listings, we present here a
summary of each macro along with notations on how to use
it. Remember, using a macro requires simply coding its

1 	 name in the operator (mnemonic) field of a line along
with any parameters In the operand field(s).

The macros are presented here in expected order of
usage;

OPEN chan,auxl,aux2,filename
Opens the given filename on the given
channel using auxl and aux2 as per OS/A+
specifications.

PRINT chan C,buffer (,length)
If no buffer given, prints just a CR on
chan. If no length given, length assumed
to be 255 or position of CR, whichever ia
smaller. Buffer may be literal string, in
which case length is ignored if given.

INPUT chan,buffer (,length]
If no length given, defaults to 255 bytes.

BGET chan,buffer,length
Binary read, a la BASIC XL, of length
number of bytes into the given buffer
address.

•

--BS--

-

• 	•
r--

BPUT chan,buffer,length
Binary write of length number of bytes from
the given buffer address.

CLOSE chan
Closes the given file.

XIO command,chan Cosuxl,auz2n,filename]
As described in chapter 5.

ROMs
"ohne may be a literal channel number (0 through
7) or a memory location containing a channel
number (0 through 7).

fl aux1", "aux2u, "length", and "command" may all be
either literal numbers (0 to 255) or memory
locations.

"filename" may be either a literal string (e.g.,
"DiFILE1.DAT") or a memory location, the latter
assumed to be the address of the start of the
filename string.

Where memory locations are given instead of 	
.

literals, they must be non-zero page locations
which are defined BEFORE their usage in the 	 -
macro(s). The following exempla will NOT work
properly II t

PRINT 3,MESSAGE1 I WRONGI

MESSAGE1 .BYTE "This WON'T WORK .111

These macros are useful instruments, but they really
are meant only as examples, to show you what you can do
with MAC/65. Please feel free to study them and change
them as you need.

(The listings start on the next page.)

'Th

- -86 - -

1000 	.TITLE "IOMAC.LID 	OSS system I/O macros"
1010 	.PAGE " 	Support Macros"
1020 	.11' .NOT .DE? 10CD
1030 	.ERROR "You must include SYSEOU.M65 ahead of thisil"
1040 	.ENDIF
1050
1060 These macros are called by the actual I/O macros
1070 	to perform the rudimentary register load functions.
1080
1090
1100 MACRO: OCR
1110
1120 	Loads 1008 number (parameter 1) into X register.
1130 :
1140 	If parameter value is 0 to 7, immediate channel number
1150 	is assumed.
1160
1170 ; If parameter value is > 7 then a memory location
1100 	is assumed to contain the channel number.
1190
1200 	.MACRO @CH
1210 	.IF 11)7
1220 	LOA 11 	•
1230 	ASL A
/240 	ASL A
1250 	ASL A
1260 	ASL A
1270 	TAX
1280 	.ELSE
1290 	LOX M*16
1300 	.END1F
1310 	.ENDM
1320
1330 :
1340 MACRO: @CV
1350
1360 / Loads Constant or Value into accumultor (A-register)
1370
1380 	If value of parameter 1 is 0-255, @CV
1390 ; assumes it's an (immediate) constant.
1400 $
1410 : Otherwise the value is assumed to
1420 I be a memory location (non-zero page).
1430.
1440
1450 $
1460 	.MACRO @CV
1470 	.1F 11(256
1480 	LDA 111
1490 	.ELSE
Isoa 	LDh 11
1510 	.ENDIF
1520 	•ENDM
1530 I

•

1540 t
1550

1560
1570 MACRO, @FL
1580 /
1590 / @FL is used to establish a filespec (file name)
1600
1610 	If a literal string is passed,'@FL will
1620 I generate the string in line, jump
1630 	around it, and place its address
1640 in the IOCB pointed to by the X-register.
1650 /
1660 ; If a non-tero page label is passed
1670 the MACRO assumes it to be the label
1680 of a valid filespec and uses it instead.
1690
1700
1710 ;
1720 	•MACRO @FL
1730 	.IF 114256
1740 	JMP *4-11+4
1750 ft* 	.BYTE 151,0 •
1760 	LDA
1770 	STA ICBADR,X
1780 	LOX 1 >OF .
1790 	STA ICBADR+1,X
1800 	.ELSE
1810 	LOA 1 4%1
1020 	STA ICBADR,X
1830 	LOX)%1
1040 	STA ICBADR+1,X
1850 	•ENDIF
1860 	•ENDM
1865

1870 	.PAGE " 	XIO macro"
1080
1890 	MACRO, X/0
1900
1910 	FORM, XIO cmd,chC.auxl,aux2N,file5pec]

• 1920
1930 	ch is given as in the ecH macro
1940 / cmd, auxl, aux2 are given as in the @CV macro

• 1950 	filespec is given as in the @FL macro
1960
1970 ; performs familiar xro operations with/for OS/A+ .
1980
1990 y If aux1 is given, aux2 must also be given •
2000 : Ifaux1 and aux2 are omitted, they are set to zero
2010 ; If the filespec is omitted, "St" is assumed
2020 ;
2030 	.MACRO XIO
2040 	.IF 1042 .OR %11)5
2050 	.ERROR "XI(); wrong number of arguments"
2060 	.ELSE
2070 	@CH 12
2080 	@CV 11
2090 	STA ICCOM,X COMMAND
2100
2110 	

.IF 10> ■4
@CV 13

2120 	 STA ICAUX1,X
2130 	 @CV 14
2140 	 STA ICAUX2,X
2150 	 .ELSE
2160 	 LOX 10
2170 	 STA ICAUX1,X
2180 	 STA ICAUX2,X
2190 	 .ENDIF
2200 	 .IF 145.2 .OR 110.4
2210 	 @FL "St"
2220 	 .ELSE

• 2230 MO
2240 	 @FL 15(@0IO)
2250 	 •ENDIF

• 2260 	JSR CIO
2270 	.ENDIF
1100

2290 	.PAGE • 	OPEN macro"
2300 	y
2310 	MACRO, 	OPEN
2320 	/
2330 I 	FORM, 	OPEN ch,auxl,aux2,filespec
2340
2350 	ch is given as in the @CU macro
2360 	auxl and aux2 are given as in the @CV macro
2370 	filespec is given as in the @FL macro
2380
2390 	will attempt to open the given file name on
2400 i the given channel, using the open "modes"

2540
2550
2560 	1
2570
2500 	;
2590 	;
2600
2610 ;
2620
2630
2640 :
2650

.PAGE " 	BGET and BPUT macros"

MACROS, 	11GET and BPUT

FORMs•BGET ch,buf,len
BPUT ch,buf,len

ch Is given as in the @CH macro
len is ALWAYS assumed to be an immediate
and actual value...never a memory address

buf must be the address of an appropriate
buffer in memory

2410 	; specified by auxl and aux2 2660
2420 	/ 2670 	; puts or gets length bytes to/from the
2430
2440

.MACRO OPEN
.IF 10<>4

2680 	;
2690 	;

specified buffer, uses binary read/write

2450 .ERROR "OPEN: wrong number of arguments" 2700 ;
2460 •ELSE 2710 firsts a common macro
2470 .IF 14'256 7.720 	7
2480 XIO 	COPN,11,12,13,1$4 2730 .MACRO OOP
2490 •ELSE 2740 @CH 	11
2500 XIO 	COPM,11,12,13,14 2750 LDA #14
2510 .ENDIF 2760 STA ICCOM,X
2520 .ENDIF 	 • 2770 LDA 	<12
2530 .ENDt4 2700 STA ICBADR,X
2535 	t 2790 LDA I 	>12

2000 STA /C87DR+1,X
2810 LD 	I 	<13

- -90 - - 2020 STA ICBLEN,X
2830 LDP 	I 	>13
2E140 STA ICBLEN+1,X
2850 JSR CIO
2860 .ENDM
2870)
2880 .MACRO BGET
2850 .IF 	104)3
2900 .ERROR "BGETt wrong number of parameters"
2910 .ELSE
2520 @GP 	11,12,13,CGBINR
2930 .ENDIF
2940 .ENDM
2950 /
2960 .MACRO BPUT
2970 ' 	.IF 	104)3
2980 .ERROR "13PUT: wrong number of parameters"
2990 	. .ELSE
3000 @GP 	11,12,t3,CPBINR
3010 .ENDIF
3020 •ENDM
3030

--91--

1-`
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440

•PAGE ' 	PRINT macro"
/
1 MACRO; 	PR/NT
;
t 	FORMs 	PRINT chr,buffer(,length)]
1
t ch is as given in Oaf macro
: if no buffer, prints just a RETURN
1 if no length given, 255 assumed
p
7 used to print text. 	To print'text without RETURN,
1 length must be given. 	See OS/A+ manual
1
: EXCEPTION: second parameter may be a literal
1 	string (e.g., 	PRINT 0,"test"), 	in which
1 	case the length (if given) is ignored.
1

.MACRO PRINT

	

.IF 1041 	.OR 10)3

.ERROR "PRINT, wrong number of parameters"

.ELSE
.IF 10)1

.IF 124128
JMP '+4+12 •

@I0 	.BYTE %$2,$98

	

@GP 	11,@IO,%2+1,CPTXTR
.ELSE

•IF 10..2
@GP 	%1,t2,255,CPTXTR

• •ELSE
@GP 	lil,i2,13.CPTXTR
.ENDIF

.ENDIF
.ELSE 	4

	

31.1P 	•+4
@IO 	.BYTE $90

	

@GP 	11,0/0,1,CPTXTR
•ENDIF 	 .

•ENDIF 	 ' 	 • .END14
/

--92-- .

,

•

7--- \

•

3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3040
3850
3860
3870
3880
3890

3900
3910

.PAGE " 	INPUT macro"
1
; MACRO: 	INPUT
1
I 	FORM, 	INPUT ch,buf,len
1
r ch is given as in the @CH macro
: buf MUST be a proper buffer address
; 	len may be omitted, in which case 255 is assumed
/
; gets a line of text input to the given
: 	buffer, maximum of length bytes
/

.MACRO INPUT
.IF 	1042 	.OR 10:3
.ERROR 'INPUT: wrong number of parameters"
.ELSE

.IF 	10..2
@GP 	11,12,255,CGTXTR
.ELSE
@GP 	11.12.1.3,CGTXTR
.ENDIF

.ENDIF
.ENDM 	 •
.PAGE " 	CLOSE macro"

/
1 MACRO: 	CLOSE
1
I 	FORM, 	CLOSE ch
1
7 Cl. is given as in the @CH macro
:
: closes channel eh
7

.MACRO CLOSE
.IF 	104,1
.ERROR 'CLOSE: wrong number of parameters"
.ELSE
OCH 	II

LOA ICCLoSE
STA ICCOM,X
JSR CIO
.ENDIF

.ENDM 	 .
1

177717:777: 	END OF 	IOMAC.LIB 	::11:1111111
:

--93--

• •
\ •
	/Th

Appendix Cs ERROR DESCRIPTIONS

---this page intentionally left blank---

When an error occurs, the system will print
•," ERROR -

followed by the error number (unless the error was
generated with the .ERROR assembler directive) and, for
most errors, a deecriptive message about the error.

Note: The Assembler will print up to 3 errors per line.

The format used in the listing of descriptions which
follows is simply ERROR NUMBER, ERROR MESSAGE,
description and possible causes.

• 1 - MEMORY FULL
• All user memory has been used. If issued by the

Editor, no more source lines can be entered. If
issued by the Assembler, no more labels or macros
can be defined.

(Th 	
NOTE: If memory full occurs during assembly and
the source code is located in memory, SAVE the
source to disk, type NEW, end assemble from the
disk instead. Now the aesembler can use all of
the apace formerly occupied by your source for
macro and symbol tables, etc.

2 	INVALID DELETE
Either the first line number is not present in
memory, or the second line number is less than the
first line number.

3 - BRANCH RANGE
A relative instruction references an 	address
displacement greater than 129 or less than 126
from the current address.

4 - NOT 2-PAGE / IMMEDIATE MODE
An expression for indirect addressing or immediate
addressing has resolved to a value greater than
255 (SPF).

5 	UNDEFINED
The Assembler has encountered a undefined label.

6 - EXPRESSION TOO COMPLEX
The Assembler's operator stack has overflowed. If
you must use an expression as complex as the one
which generated the error, try breaking it down
using temporary SET labels (1.e., using

--95--

• 	Si

1

7 - DUPLICATE LABEL
The Assembler has encountered a label in the label
column which has already been defined.

8 - BUFFER OVERFLOW
The Editor syntax buffer has overflowed. Shorten
the input line.

9 - CONDITIONALS NESTING
The .IF-.ELSE-.ENDIF construct is not properly
nested. Since MAC/65 cannot detect excess
.ENDIFe, the problem must be an EXTRA .ELSE or
.ENDIF instead.

18 - VALDE s 255
The result of an expression exceeded 255 when only
one byte as needed and allowed.

11 - CONDITIONAL STACK
The .IF-.ELSE-.ENDIF nesting ham gone past the
number allowed. Conditionals may be nested a
maximum of 14 levels.

12 - NESTED MACRO DEFINITION
The Assembler 	encountered, a 	second 	.MACRO
directive before the .ENDM directive. This error
will abort assembly.

13 - OUT OF PHASE
The address generated in pass 2 for a label does
not match the address generated in pass 1. A
common cause of this error are foward referenced
add . If using conditional assembly (with or
without macros), this error can result from a .1F
evaluating true during one pass and false during
the other.

14 - • ■ EXPRESSION UNDEFINED
The program counter was forward referenced.

15 - SYNTAX OVERFLOW
The Editor is unable to syntax the source line.
Simplify complex expressions . or break the line
into multiple lines.

16 - DUPLICATE MACRO NAME
An attempt was made to define more than one Macro
with the same name. Only the first definition
will be valid.

17 - LINE I s 65535
The Editor cannot accept line numbers greater than
65535.

18 - MISSING .ENDM
In a Macro definition, an EOF was reached before
the 	corresponding 	.EN13M 	terminator. 	Macro
definitions cannot cross file boundrys. 	This
error will abort assembly.

19 - NO ORIGIN
The • ■ directive is missing from the program.
Note, This error will only occur if the assembler
is writing object code.

20 - NUM/REN OVERFLOW
On the RCN or NUM command, the line number
generated was greater than 65535. If PEN issued
the error, entering a valid REN will correct the
problem. If NUM issued the error, the
auto-numbering will be aborted.

21 - NESTED .INCLUDE
An included file cannot itself contain an .INCLUDE
directive.

22 - LIST OVERFLOW
The 	list 	output buffer has 	exceeded 255
characters. 	nue smaller numbers in the .TAB
directive.

23 - NOT SAVE FILE
An attempt was made to load or assemble a file not
created with the SAVE command.

24 - LOAD TOO BIG
The load file cannot fit into memory.

25 - NOT BINARY SAVE
The file is not In a valid binary (memory image,
assembler object, etc.) format.

27 - INVALID .SET
The first dcnum in a .SET specified a non-existent
Assembler system parameter.

30 - UNDEFINED MACRO
The Assembler encountered a reference to a Macro
which is not defined. Macros must first be
defined before they can be expanded.

31 - MACRO NESTING.
The maximum level of Macro nesting has exceeded 14
levels.

--96--

•
32 - SAD PARAMETER

In a Macro expansion, a reference wan made to a
nonexistent parameter, or the parameter number
specified was greater than 63.

128 - 255 	[operating system errors]
Error numbers over 127 are generated In the
operating system. Refer to the OS/A+ manual for
detailed descriptions of such errors and their
Causes.

--98--

. ..

-98--

