
by Mark Schmelzenbach

Introduction
Programming Environment

Hardware
Assemblers
Compilers
Graphics editors
Sound editors
Emulators

Graphics Modes
Splitting modes vertically
HIP/RIP
TIP
GTIA 9++
MCS
Graphics Links and Resources

Scrolling techniques
MWP
Hardware-assisted Parallax Scrolling
Scrolling by Half-steps

Using the mouse
Pushing POKEY

Digital samples
Digital Sample Links and Resources

Trackers
RMT
TMC2

Soft Sprites
Bitmap sprites
Character sprites

Advanced Player/Missile Use
ORA overlapping for color
GTIA Gr. 9 overlay
Reusing players
Collision detection

Hardware exotics
Accessing additional memory
Double POKEY
Double GTIA
Video Board XE

Ironman Contributors

Introduction
Welcome to “Ironman Atari”, a collection of articles detailing new techniques in Atari 8bit programming.
Although the Golden Age for Atari has long passed, several new programming methods have been
discovered or rediscovered over the past decade. These new methods push and twist classic Atari iron
in ways that might have surprised even Jay Miner himself.

Today, the Internet provides a forum that allows people to share information in a manner unsurpassed
in the past. This is a compilation of articles gathered for the the purpose of preserving this knowledge
for future programmers. Who knows? In another 25 years, there may still be people hacking away on
their trusty Atari computers. Many of the articles here have been gathered from a variety of sources,
including USENET, user forums and solicited articles. Where ever possible credit has been given to the
original authors. If you find an attribution that is missing or in error, please contact me so that the
attribution can be corrected.

This book will use use two primary reference machines, the Atari 800XL and the Atari 130XE. Both of
these reference machines are unmodified NTSC machines. Although there are places where other
machines may be required (for instance a PAL machine, the near mythical 320XE, a double POKEY
machine, or other hardware exotics) these are exceptions and will be noted as such. In addition, most
examples will work fine on a factory standard Atari 800 with GTIA chip unless explicitly stated otherwise.
It should also be noted that almost all of these techniques also can be used on the Atari 5200 since this
machine has nearly identical graphic hardware as that of the Atari 8-bit computer line.

http://atariwiki.strotmann.de/xwiki/bin/view/Main/
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HIntroduction
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HProgrammingEnvironment
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HHardware
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HAssemblers
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HCompilers
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HGraphicseditors
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HSoundeditors
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HEmulators
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HGraphicsModes
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HSplittingmodesvertically
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HHIP2FRIP
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HTIP
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HGTIA92B2B
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HMCS
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HGraphicsLinksandResources
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HScrollingtechniques
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HMWP
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HHardwareassistedParallaxScrolling
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HScrollingbyHalfsteps
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HUsingthemouse
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HPushingPOKEY
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HDigitalsamples
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HDigitalSampleLinksandResources
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HTrackers
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HRMT
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HTMC2
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HSoftSprites
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HBitmapsprites
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HCharactersprites
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HAdvancedPlayer2FMissileUse
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HORAoverlappingforcolor
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HGTIAGr9overlay
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HReusingplayers
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HCollisiondetection
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HHardwareexotics
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HAccessingadditionalmemory
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HDoublePOKEY
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HDoubleGTIA
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HVideoBoardXE
http://atariwiki.strotmann.de/xwiki/bin/view/APG/Ironman+Atari?xpage=print&#HIronmanContributors

All examples will be written for ATasm, a MAC/65 compatible assembler, and will assemble on real
hardware using MAC/65 unless specifically stated.

It is assumed that the reader is already familiar with the Atari computer platform and assembly
language. Additional reference material is provided below:

Atari Graphics and Advanced Arcade Game Design , by Jeffrey Stanton and Dan Pinal. The full text of
this book is available on-line at http://www.atariarchives.org/agagd

Atari Hardware Manual Atari Roots, A Guide to Atari Assembly Language, by Mark Andrews. The full
text is available at http://www.atariarchives.org/roots

De Re Atari – By Chris Crawford, Lane Winner, Jim Cox, Amy Chen, Jim Dunion, Kathleen Pitta, Bob
Fraser, and Gus Makrea. This is THE seminal work on the Atari home computer and should be
considered required reading. The full text can be found on-line at http://www.atariarchives.org/dere

Dr. C. Wacko's Miracle Guide to Designing and Programming Your Own Atari Computer Arcade
Games, by Robert Kurcina, David L. Heller, and John F. Johnson. This book can still be found on
Amazon.com.

Mapping the Atari! Revised Edition, by Ian Chadwick. The full text can be found on-line at
http://www.atariarchives.org/mapping

Eventually, I would like to see this expand into a larger work with well-commented programs and games
that demonstrate the advanced techniques described. It is not just technology that has advanced over
the last 25 years, but also the sophistication of the gaming market. There are several games that exist
today, particularly on hand-held devices such as phones and the GBA/DS/PSP or the emerging Flash
based minigame market that are not out of reach for the Atari 8-bit. All it takes is the knowledge to
program and the time to do so. Here is to the next 25 years!

--Mark Schmelzenbach, ed.

Disclaimer: As always, errors inevitably creep into a work such as this. If you find an error or better yet,
if you wish to submit an article for inclusion in a future release, please contact me.

Programming Environment
The Atari programming environment has changed dramatically over the last 25 years. Most
development work now can be done cross-platform by mere mortals on a PC instead of on specialized
mainframes or squinting at a flickering television on the actual Atari hardware. This opens up new
realms previously unavailable. Numeric tables and graphics can be precalculated using today's big
muscle CPUs to be used by the native Atari. Large projects can be assembled in less than a second
instead of listening to the old floppy drive grind away for a quarter of an hour. The assemble/test/debug
cycle is greatly reduced by using an emulator instead of waiting for the real iron to reset. This allows for
quick itertaion, testing and development of ideas.

The following is a list of my current programming environment. HTML links and short descriptions of
each item are provided below. I work under Linux, so most of the items below are heavily UNIX based
rather than Windows. Many of the UNIX tools either work on the Macintosh or can be ported with a bit
of effort. There are some excellent Windows-only tools, but I do not use these.

Additional disclaimer: I am the author of ATasm and envisionPC.

Hardware
Pentium 4 machine running Linux
SIO2PC cable: These cables can be purchased through the AtariAge store, from Steven Tucker,
on eBay, or you can build your own. This cable in conjunction with the proper software turns your
PC into a fileserver for the real Atari computer.
AtariSIO version 0.2.0: AtariSIO is a Linux kernel module and user-level program by Mattias
Reichl that allows the use of a SIO2PC cable under Linux. AtariSIO is available at
http://www.horus.com/~hias/atari
AtariMax flash cartridge (1 megabit): This cartridge is available in 8 megabit size. AtariMax flash
cartridges are reprogrammable flash-memory based cartridges. This effectively provides extra
memory that can be quickly paged in for things like unrolled code loops, look-up tables, etc. More
information can be found at http://www.atarimax.com/flashcart/documentation
Atari800 (NTSC, GTIA, 64K expansion)
Atari130XE (NTSC, stock)

Assemblers
EMACS as primary editor (vi on occasion)
ATasm v 1.5: ATasm is highly compatible with the original OSS Mac/65 native compiler. ATasm is
written in C, and compiles without modification on any platform that has a GCC compiler. ATasm

http://www.atariarchives.org/agagd
http://www.atariarchives.org/roots
http://www.atariarchives.org/dere
http://www.atariarchives.org/mapping
http://www.horus.com/~hias/atari
http://www.atarimax.com/flashcart/documentation

written in C, and compiles without modification on any platform that has a GCC compiler. ATasm
has been specifically designed for the development of programs for the Atari home computer. It
can produces Atari native binary load object files, raw cartridge images, and can optionally target
the machine state files produced by many emulators. Binary load files can also be written to disk
images for easy loading in other emulators or onto real hardware via SIO2PC. It is available at
http://atasm.sourceforge.net
Another popular assembler that is also Atari specific is XASM by Fox of Taquart. This assembler
is compatible with JBW's Quick Assembler, which was the primary assembler used in Poland and
other eastern European countries during the 1990s. XASM includes several pseudo-instructions
(like mva) and pseudo-indexing modes. In addition, it can generate Atari native binary object files
and has includes utilities to create boot disk images. XASM can be found at
http://atariarea.krap.pl/x-asm/ ;
If you are looking for a Linux assembler that is Quik Assembler compatible, try a program called
Zooey, found at http://atari8.sourceforge.net/zooey.html
Another assembler worth considering is the MADS assembler, found at http://mads.atari8.info/;
Currently, the documentation is in Polish, but efforts are underway to provide an English
translation.

Compilers
Some projects have been written using cc65, a version of C that targets the 6502. In addition to
providing a high-level language, the project also provides an assembler and a powerful linker,
allowing basic library management. cc65 can be found at http://www.cc65.org/.

Graphics editors
envisionPC is a font/map editing program similar to the original Envision program written for the
Atari. It runs on an IBM PC (either Linux or DOS/Windows) and includes all source code. It will
load and save maps and character sets to disk images, MAC/65, and Action! formats. It is
available at http://atari.miribilist.com/envision/index.html
gEnvision is another Envision-like program written for Linux written by Larry Richardson.
gEnvision will allow you to edit Atari character sets in either single or multicolor modes. It will let
you create character based "maps" of up to 256x256 characters. It will save characters sets and
maps as MAC/65 source code. gEnvision is available at http://bellsouthpwp.net/r/i/rich5462
graph2font is a conversion utility for full screen pictures. Graph2Font has evolved into a full-
featured graphics editor and conversion tool. The latest version can be found at
http://g2f.atari8.info
GIMP and a number of homebrew tools for graphics conversion

Sound editors
RMT 1.26: RASTER Music Tracker (RMT) is a cross-platform tool for making music on PC (OS
Win9x). RMT uses Atari music routines written by Radek Sterba. Available at
http://raster.infos.cz/atari/rmt/rmt.htm
sox: Sound eXchange : universal sound sample translator is a UNIX utility used to convert
samples between formats
Homebrew tools to convert .WAV to 4-bit samples playable on the Atari.

Emulators
Atari800 1.3.3 emulator: This is free and portable Atari800/XL/XE/5200 emulator, originally written
by David Firth and now developed by the Atari800 Development Team headed up by Petr Stehlik.
This is the primary emulator that I use. It has a very nice monitor for debugging and recently has
added cycle-exact emulation and greatly improved POKEY emulation. The Atari800 emulator is
available at http://atari800.sourceforge.net.
The Atari++ emulator is also an excellent emulator by Thomas Richter. It was the first cycle-exact
emulator and provides many useful functions including a very nice monitor and emulation of Flash
cartridges. Atari++ is available at http://www.math.tu-berlin.de/~thor/atari++
Atari800Win Plus: This emulator is Windows only, but is considered one of the best emulators
around. It can be found at http://www.a800win.atari-area.prv.pl.

Although cross-platform development has come a long way, always remember that it is vitally important
to test your programs on the real machine. Many of the techniques detailed within require cycle-exact
timing and push the hardware in strange ways that emulators may or may not properly emulate.

Graphics Modes
Introduction

http://atasm.sourceforge.net/
http://atariarea.krap.pl/x-asm/
http://atari8.sourceforge.net/zooey.html
http://mads.atari8.info/;
http://www.cc65.org/
http://atari.miribilist.com/envision/index.html
http://bellsouthpwp.net/r/i/rich5462
http://g2f.atari8.info/
http://raster.infos.cz/atari/rmt/rmt.htm
http://atari800.sourceforge.net./
http://www.math.tu-berlin.de/~thor/atari++
http://www.a800win.atari-area.prv.pl./

The first three techniques related in this section rely on “bugs” in the GTIA chip. The original CTIA chip
did not have GTIA modes 9,10,11. However, in early 1982 Atari began shipping with GTIA chip which
provided 3 new graphics modes. It appears that the GTIA was originally slated to be shipped with the
original units but there were manufacturing issues that delayed production (see Atari History sec?) The
new GTIA modes can be selected by setting the display list to ANTIC mode f (graphics 8), and then
setting the GPRIOR register appropriately.

GTIA mode 9 allows 16 shades of a single color
GTIA mode 10 allows for 8 colors from the Atari palette
GTIA mode 11 allows 16 colors of a single shade

Splitting modes vertically
The “unity” demo by Our-5oft has a screen that displays 3 different graphics modes on a single scan-
line: graphics mode 8 (ANTIC mode f), mode.9 and something similar to mode15 (ANTIC mode e). This
effect is accomplished by altering the GPRIOR register on-the-fly within a DLI. By writing a 0 into
GPRIOR at the beginning of a scan-line, waiting some time, switching to GTIA mode.9 by writing #$40
and finally in the last 1/3 of the scan-line writing a 0 again. Rather than returning the display to mode f,
the GTIA becomes confused and displays the remainder of the line as ANTIC mode e. This effect can
be seen is several demos, including “unity” and is used in the game Admirandus by MK-SOFT. Below is
a kernel that demonstrates this technique.

This technique can also be used to split between GTIA modes, so with careful counting it should be
possible to have 4 or possibly 5 modes on a single line. Determining a good reason to do this is up to
the game author.

Notice that this technique will work in text modes as well as in graphics modes, but cycle counting
becomes problematic in text modes as ANTIC steals extra cycles every x number of scan lines to
refresh the character map.

HIP/RIP
This section is based on a translation of the original article published in Polish magazine "Atarynka", no.
2/2002 and the original HIP FAQ written by Heaven of Taquart.

HIP (HARD-Interlace Picture) was discovered by members of HARD Software in 1996. This mode
allows a nearly flicker-free display of 30 shades with a resolution of 160x200. The basic idea exploits a
bug discovered with the GTIA that appears when alternating between lines of GTIA 9 and GTIA 10.
Whenever a GTIA 10 line is displayed, the GTIA chip ends up shifting the line by half of a pixel.
Interlacing two alternating display lists allows the generation of an apparent 160 pixel horizontal
resolution. It should be noted HIP is not the first to experiment with mixing GTIA modes. However,
earlier techniques such as APAC mixed modes 9 and 11, yielding a display of capable of 256 colors.
Mixing these modes does not cause the GTIA to shift, and so displays that did this were limited to a
horizontal resolution of 80 pixels. A HIP display consists of two alternating display lists and associated
pictures. This is shown below in figure ??. By appropriately selecting the GTIA mode 10 palette and
carefully placing the mode 9 pixels, HIP has an average bit-depth of HIP of 3.5 bits. (GTIA mode 9 has
4 bits, GTIA mode 10 has 3).

dli pha ; preserve registers
txa
pha
tya
pha
ldy #64 ; display is 64 scan-lines tall
wloopsta WSYNC ($d40a)
lda #0
ldx #$41 ; for GTIA 9
sta PRIOR ($d01b)
nop ; wait for ~24 cycles
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
stx PRIOR ($d01b)
nop
nop
sta PRIOR ($d01b)
dey
bne wloop
pla ; restore registers and exit
tay
pla
tax
pla
rti

 DLIST ONE DLIST TWO
 mode 9 mode 10

 mode 10 mode 9

 mode 9 mode 10

 mode 10 mode 9

Since GTIA mode 9 obtains its background color from register 712 and mode 10 obtains its background
color from register 704, it is easiest to assign the palette as follows:

This method ends up “wasting” a color register since registers 704 and 712 are both set to the
background color. However, it simplifies the DLI routine as now only the GPRIOR register needs to be
set instead of alternating the background registers on every line. By selecting the above colors, a
palette of 30 colors becomes available in HIP by selecting the appropriate color in each display list as
detailed below:

 9 #000 #111 #222 #111 #222 #333 #444 #333 #444

 10 #000 #000 #000 #222 #222 #222 #222 #444 #444

 HIP #0.0 #0.5 #1.0 #1.5 #2.0 #2.5 #3.0 #3.5 #4.0

 9 #555 #666 #555 #666 #777 #888 #777 #888 #999

 10 #444 #444 #666 #666 #666 #666 #888 #888 #888

 HIP #4.5 #5.0 #5.5 #6.0 #6.5 #7.0 #7.5 #8.0 #8.5

 9 #AAA #999 #AAA #BBB #CCC #BBB #CCC #DDD #EEE

 10 #888 #AAA #AAA #AAA #AAA #CCC #CCC #CCC #CCC

 HIP #9.0 #9.5 #A.0 #A.5 #B.0 #B.5 #C.0 #C.5 #D.0

 9 #DDD #EEE #FFF

 10 #EEE #EEE #EEE

 HIP #D.5 #E.0 #E.5

To display a HIP picture, a special display list set can be constructed that alternates between screens
every frame. In addition, two DLI routines need to be written: one to alternate between GTIA modes 9
and 10 and the other to alternate between modes 10 and 9. A simple display routine is included below.

HIP pictures are difficult to create because the pixels cannot be independently set. This is due to the
fact that we are simulating a 160 pixel wide display by overlapping two offset 80 pixel displays, as seen
in the figure below. So, in order to reduce flicker, no two HIP pixels should vary their luminance by more
than 2 shades. This tends to favor pictures that are digitized or ray-traced. This limitation makes
drawing HIP pictures by hand extremely difficult. As a result, the best way of generating HIP pictures is
to convert it using a program on a cross-platform machine. There are several converters available of
varying degrees of sophistication Refer to the links section at the end of this chapter to find an
appropriate converter.

704 $00 708 $08 712 $00
705 $02 709 $0A
706 $04 710 $0C
707 $06 711 $0E

mode 10 .. 00 00 22 22 44 44 ..

There is another drawback that is a result of interlacing pictures, a single HIP pixel vertical line is
impossible. This is seen as a wavy borders on the vertical edges of most HIP pictures. Fortunately, this
can be fixed with judicious use of Player/Missiles. Remember that register 704 is set to the background
color. Register 704 is also used as the color for player 0 and its missile. By setting the shape of player
0 and missile 0 to a solid strip, they can be used as borders. This provides the picture solid frame.
There is a simple extension to the HIP format to provide color instead of only allowing a monochrome
pallet. This is known as the RIP (Rocky Interlace Picture) file format. RIP allows modification of the color
registers on each GTIA 10 lines. This allows for non- monochrome pictures, but RIP pictures selection
is not straight-forward.

TIP
This section is based on a translation of the original article published in Polish magazine "Atarynka", no.
2/2002.

TIP (Taquart interlace picture) is another method of adding color to HIP. This method combines the
original HIP format with ideas demonstrated by the original 256 color modes mentioned above. Colors
are added by introducing a GTIA 11 line above each HIP GTIA 9/10 line as shown in the figure below.
Unfortunately, adding this extra line halves the vertical resolution and introduces dark lines. On the
other hand, pixels are now square, which helps conversion.

 DLIST ONE DLIST TWO
 mode 11 mode 11

 mode 9 mode 10

 mode 11 mode 11

 mode 10 mode 9

TIP pictures can be converted manually from a 24-bit picture in following manner. First, scale or crop
the picture to an appropriate size (160x120). Second, map the picture to the Atari color palette. Note
that the 256-color Atari palette is available in PhotoShop format in the Atari800 emulator package. (This
can also be read by GIMP). Finally, the color information and “HIP-data” need to be separated. The
easiest way of obtaining the color data is to take the color of every second pixel. Conversion of shades
to HIP can be problematic, but a reasonable method is to take the shade of every second pixel (starting
from the first) for mode 9, and the other pixels' for mode 10. Use all four bits for GTIA 9 shades and
ignore the lowest bit for mode 10.

Taquart has released the source to their incredible “Numen” demo (which demonstrates many of the
techniques described here). As part of the source release, they have a few conversion utilities including
a HIP to TIP colorizer utility and a simple PCX to TIP converter.

GTIA 9++
This text is based on a translation of the original article published in Polish magazine "Atarynka", no.
2/2002 by Piotr Fusik (Fox/Taquart); The textmode discussion is from Jaskier on AtariAge programming
forum

Before GTIA 9++ was developed, the graphics mode most often used by demo writers was a mode
called “Konop's mode.” This mode was first seen in the Asskicker demo written by Konop/Shadow.
Konop's mode has square pixels, 16 shades, and a small enough memory-footprint that the entire
screen can be updated in a single vertical blank (depending, of course, on the complexity of the drawing
routines). When Konop's mode is used in GTIA mode 9, it is also referred to as GTIA 9+. Konop's mode
is generated by creating a specialized display list. Each mode line is generated by a the following:

Fox/Taquart discovered a way of generating a new graphics mode that has many of the same strengths
as Konop's mode, but without requiring the use of blank lines. This mode has been dubbed GTIA 9++

mode 10 .. 00 00 22 22 44 44 ..
mode 9 .. 00 00 22 22 ..
HIP .. 00 11 22 33 ..

$0f line of mode 15
$00 blank line
$4f <screen>line of mode 15 + LSM
$00 blank line

as Konop's mode, but without requiring the use of blank lines. This mode has been dubbed GTIA 9++
(or GTIA 10++, depending on the base GTIA mode in use).

In addition to the cleaner looking display, GTIA++ has a few other advantages over Konop's mode:

1. The display list is significantly shorter
2. The display list only uses one LMS instruction, so instead of using two display lists for

double-buffering, the screen-address in the DL can be directly altered.
3. The height of each line mode can be easily modified (up to a height of 16 pixels)
4. ANTIC takes less cycles to display a GTIA 9++ mode. This comes as a trade off for some

extra work for the CPU. Although not much is required of the CPU, the work must be
carefully synchronized with the display. This means that a simple implementation of GTIA
9++ will not show significant savings. A less naïve method can be written with additional
programming effort.

5. The method used can be used in other ANTIC modes to generate, for example, a
hardware-supported 40x40 text-mode. TMC 2.0 uses this technique to create a textmode
screen of 40x39. See the discussion at the end of this section for more details.

This new graphics mode was used to great affect in Taquart's “Numen” demo in the Vector engine
section.

The basic idea underlying GTIA 9++ is simple: force ANTIC to repeat the same line multiple times using
its internal memory. ANTIC normally does this when generating native modes. Consider ANTIC mode 8
(Graphics mode 3), which is a 40x24 display. In this mode, ANTIC generates the first displayed scan-
line by retrieving it from main memory but proceeds to generate the next 7 scan-lines from its own
internal memory. ANTIC tracks the vertical dimension of each scan-line with a four-bit counter called the
Delta Counter (DCTR). Normally the DCTR starts at 0 and repeats each scan-line until it reaches a
count specific to each mode. In ANTIC mode 8, this count is 8 in ANTIC mode e this count is 0.

Unfortunately, the DCTR is not directly accessible by the CPU. However, the behavior can be indirectly
effected. It turns out that the DCTR acts differently if vertical scrolling is enabled. On the very first
vertical scrolled line, the DCTR will count from the value in VSCROL to 0. On the very last vertical
scrolled line, the DCTR counts from 0 to VSCROL. Everywhere else, the DCTR behaves normally. At
the beginning of each mode line, DCTR is loaded with the appropriate value (either VSCROL or 0).
Near the end of each scan-line, the DCTR is compared with the terminating value (either the mode
specific count, or VSCROL). If the DCTR and the terminating value are equal, the next display list
instruction is fetched otherwise the DCTR is incremented and the line is repeated.

Consider the following display list, using ANTIC mode 8 and VSCROL set to 6:

The native behavior is for the first line of data to be visible for 2 scan-lines (DCTR values 6, 7); A match
is made and the next line of data is fetched from main memory. This line is seen 8 times (DCTR values
0,1,2,3,4,5,6,7) before its count is reached. The final line is seen for 6 scan-lines (DCTR values
0,1,2,3,4,5). So, in order to produce a mode 9++ screen, the values of VSCROL must be set
appropriately to cause ANTIC to repeat itself. Consider following very short display list:

In this case, the first line will be seen 4 times (DCTR values 13,14,15,0 - DCTR wraps from 15 to 0,
because it's 4-bit), while the second line will be seen 14 times (DCTR values from 0 to 13). Similarly, if
VSCROL is set to 3, the first line will be seen 14 times and the second will be seen 4 times.

So, in order to have each line repeated 4 times, the following display list should be created:

and the VSCROL register needs to be updated at the proper time.

$28 line of mode 8, vertical scroll bit set
$08 line of mode 8, vertical scroll bit clear
$08 line of mode 8, vertical scroll bit set (last line of the display)
$41 <dlist>jump to top of the display list

$2f line of mode 15, vertical scroll bit set
$0f line of mode 15, vertical scroll bit clear
$41 <dlist>jump to top of display list where VSCROL is set to 13.

$6f <screen>line of mode 15, LMS, vertical scroll bit set
$0f line of mode 15, vertical scroll bit clear
$2f line of mode 15, vertical scroll bit set
$0f line of mode 15, vertical scroll bit clear
...

This diagram shows two lines of GTIA 9++ (8 scan-lines). Initially, VSCROL must be set to 13.
(Technically, because DCTR is a 4-bit register, the high nibble may be anything). As soon as ANTIC
loads DCTR with this value, the first line will be displayed correctly. The second line will proceed to load
properly. It is only near the end of the last scan-line of the second line that VSCROL must be set to 3.
This allows plenty of time, and may be set on the DLI of the first line. The difficulty comes in preparing
ANTIC to display the third line. As demonstrated in the diagram, there is only a very narrow window,
consisting of only a few cycles, in which to write 13 into VSCROL. Manipulation of the VSCROL register
can be done in three ways:

1. using a DLI
2. inside of unrolled effect code
3. using a POKEY timer IRQ

The first implementation is clearly the easiest, but it is also the slowest. The second implementation is
optimal, but correctly timing code loops realistically constrains this to simple effects. The third option
performs better than the first since POKEY timers can be set with single cycle accuracy, removing the
time wasted in a WSYNC. However, using a POKEY would cost a the program a valuable sound
channel. As such, the first implementation will be the method described here.

In order to reduce the amount of time wasted in the WSYNC, the number of DLIs should be as small as
possible. Using a DLI every second mode line, (once every 8 scan-lines), is sufficient. The DLI should
be set for every line where the vertical scroll bit is clear. The easiest way to ensure proper
synchronization is to use WSYNC. Then write 13 to VSCROL and followed by the 3. The following code
provides a simple kernel to do this:

So, how many cycles does GTIA 9++ save over Konop's mode? Each mode line in Konop's mode costs
6 cycles for the display list plus an additional 64 or 80 cycles for the screen, depending on width. GTIA
9++ takes only one cycle per line plus 32 or 40 cycles for screen data. In addition, VSCROL must be
updated which takes a further 6 cycles. For an entire screen 59 lines high the following costs are
incurred:

Narrow screen: Konop: 1+59*(6+64)+2+3=4136 9++: 1+59*(1+32+6)+2+3=2307

Normal screen: Konop: 1+59*(6+80)+2+3=5080 9++: 1+59*(1+40+6)+2+3=2779

This indicates that there is about a 6-7% gain in CPU time using GTIA 9++.

Unfortunately this is only true if GTIA 9++ is implemented using the optimal code unrolling method
(implementation 2 in the earlier list). If a DLI is used to update VSCROL then Konop's mode is faster.
One possible compromise is to use the time before the WSYNC for calculations. In addition, traditional
uses of DLIs (color changes or P/M multiplexing) can be had at nearly no additional cost.

As a final caveat, while Konop's mode can be trivially extended to 240 scan lines by placing the JVB at
the end of the display list, GTIA 9++ has problems displaying graphics in this last line. Either remain
satisfied with 59 lines or reduce the top or bottom line to a height of 3 scan lines.

The native music tracker TMC 2.0 uses the same VSCROL technique described above to create a
40x39 character display. To do this, first a custom character set must be designed using an 8x6 font.
Then, set up a display list with alternating text lines with the vertical scroll bit set. Note that as the text
lines alternate down the screen, sometimes the first 2 lines of the font are cut and sometimes the
bottom two lines are cut. This requres the use of two character sets. The DLI from TMC 2.0 looks like
the following:

DCTR
 13 @-------------------------
 14 --------------------------
 15 --------------------------
 0 --------------------------
 0 ==========================
 1 ==========================
 2 ==========================
 3 ====!==================*##
 \\--visible screen--/

'-' - first mode line (bit 5 in DL is set)
'=' - second mode line (bit 5 in DL is clear)
'@' - VSCROL must contain 13 here
'!' - Start of DLI
'*' - VSCROL must contain 3 at this point
'#' - here we put 13 into VSCROL

dli pha
 sta WSYNC ;($d40a)
 lda #13
 sta VSCROL ;($d405)
 lda #3
 sta VSCROL ;($d405)
 pla
 rti

This mode could be emulated in software by using a Graphics 8 screen. However, the hardware
supported mode takes less memory. A Graphics 8 screen takes 7680 bytes for display, ~200 bytes for
the display list, and 1024 bytes for the custom display font (although the font could be restricted to only
characters used in the display). This text mode takes 1560 bytes for the display, ~42 bytes for the
display list, and 2048 bytes for the font. (DMA cycles here too)

MCS
Something about MCS and/or graph2font conversions

Graphics Links and Resources
Original HIP FAQ
Original Mode9++ document
“Numen” link
“Asskicker” link
“unity” and other
MCS demo
HIP converters

Scrolling techniques
MWP
The usual method of scrolling on the Atari is to create the entire logical display in memory, and then use
ANTIC to pan across this display. This method is easy and very efficient, requiring very little CPU time.
The only problem occurs when it is infeasible to hold the entire logical display in memory at one time. If
this is the case, then it becomes necessary to either generate the display on demand or reduce the
scope of the game.

The traditional method of generating the display on-the-fly is the method that most other platforms are
forced to use. The most straight forward method of doing this involved creating a double-buffer. Show
one screen to the player, while creating the next frame in memory appropriately shifted. When this
second screen is complete, wait for the VBLANK, then flip it onto the display and start work on the first
screen. This method can be extended by using a technique called triple-buffering which never waits for
the VBLANK, but instead immediately starts work on the third screen. In this manner, no CPU cycles
are wasted waiting for the vertical blank, and the CPU is always working.

Triple-buffering was used effectively in the IBM-PC game “Jazz Jackrabbit” by Epic MegaGames in the
early 1990s. It is also the method that should be used if a game being presented in first-person
perspective. For instance, the Atari port of Space Harrier by Chris Hutt uses triple-buffering to help keep
the frame-rate up.

Analogue Multiplexer created a way to generate the screen on demand, but without requiring large
memory copying. This allows the program to forgo the double or triple buffer and dramatically reduces
CPU usage. This new scrolling technique has been named the minimum-wrapping-principle (MWP).

MWP scrolling combines the strengths of traditional Atari scrolling and scrolling created by on-demand
screen generation. The primary advantages are:

1. The memory required for the displayed map is just over the requirement for one screen.
Remember, however, that the logical source data still needs to be in memory. See the
discussion of when to use MWP below for further information.

2. Large amounts of data copying is not necessary, only one row or column buffer needs to
be written at one time.

3. Only 2 LMS commands in the display list

Although MWP scrolling described here is for a character mode screen, the same principle can be
applied to a bitmap screen. In fact, it was during a discussion of scrolling bitmap screens that MWP was
developed.

dli pla
 sta WSYNC ;($d40a)
 lda linewsk
 sta VCROL ;($d405)
 eor #7 ; toggle between 2/5
 sta linewsk
 lda fontwsk
 sta CHBASE ;($d409)
 eor #4 ; toggle between two fonts
 sta fontwsk
 pla
 rti

The basic idea of MWP is to wrap the screen around onto itself, a bit like taping the ends of a piece of
paper. To demonstrate this, consider a 3x3 display. MWP requires that one row be duplicated, one copy
at the beginning of screen memory and the one at the end of screen memory. This means that in order
for a 3x3 display to be appropriately created there must be 4 rows in all. For this example, suppose that
screen memory begins at address $6000. It then follows:

This display is shown in the following diagram.

Notice that rows 0 and 3 are exact duplicates of each other. This is necessary in order to properly
perform wrapping from row 3 back to row 1. This can be seen in figure 1B. Initially, the screen will start
in the state shown in figure 1A. If vertical scrolling is performed, the display list moves from 1A > 2A >
3A > 1A and so on. The lowest row is hidden off-screen and is used as a buffer. If row 0 or 3 is written
into, then a copy must be made to rows 3 or 0 respectively.

When scrolling horizontally, the entire sequence is cycled:

1A > 1B >1C >2A >2B >2C >3A >3B >3C >1A and so on. In this case, the rightmost row is off of the
screen and should be written into as a buffer. Again, if data in row 0 or 3 is modified, that modification
needs to be reflected in the other row.

Note that although the starting state may differ, the flow will remain the same. So, scrolling

Wrapping from row 3 to row 0 is performed via an LMS instruction. This means that MWP has two LMS
instructions, one at the top of the screen, and a second LMS wherever row 0 has to be displayed. Using
the LMS to wrap the screen is what eliminates the need for a full screen copy.

Hardware-assisted Parallax Scrolling
Scrolling while backtracking with characters either dynamically or via flipping through 4 separate
character sets (in ANTIC 4).

Note C64's “Flimbo's Quest”

Scrolling by Half-steps
It is possible to scrolling high resolution graphics (320 pixels wide) half-color clock at a time. This can
be accomplished by using soft sprites in Antic F and redrawing the items each frame. Alternatively,
hardware assistance can be provided by using two Antic 2 character sets shifted by a single pixel. The

Row 0: $6000-$6002
Row 1: $6003-$6005
Row 2: $6006-$6008
Row 3: $6009-$600B

hardware assistance can be provided by using two Antic 2 character sets shifted by a single pixel. The
scrolling routine would then look like: character set flip, fine scroll step, character set flip, fine scroll step,
then eventually a coarse scroll.

One thing to be careful about when using this technique is color artifacting. Be sure to check on real
hardware to ensure your objects' are not color strobing.

Similarly, it is possible to scroll carefully designed GTIA graphics a single color clock at a time.
Basically, it is possible to exploit the pixel shifting property observed in the HIP/TIP discussion above.
Graphics 9 and Graphics 10 pixels are 1 color-clock shifted. By designing an 8 shade item, and
carefully mapping the Graphics 10 palette to match the shades of the Graphics 9 palette, you can flip
screens (or character sets, if you are using GPRIOR modes in Antic 2 instead of Antic F) between fine
scrolling. The scrolling routine then looks like: flip image (or character set) and GPRIOR to mode 9, flip
image (or character set) and GPRIOR to mode 10, fine scroll, flip image and return to GPRIOR mode 9,
etc.

Note: Another, much more limited method is possible by using player-missiles as masks to fake the fine
scroll. By placing players set with the background color at the leading and tailing edge of a GTIA shape,
the player can mask the item underneath. The scrolling routine would then consist of moving the
players, then shifting the shape. The biggest problem with this method is that in order for the illusion to
work, each scanline of the object can only have 1 color. This is due to the fact that only the object
silhouette is “moving” at the single color clock rate -- the interior detail will remain static and the illusion
will be lost.

Using the mouse
This section is based on a news posting by Jaskier/Taquart (Marcin Lewandowski) Reading a mouse
can be difficult because of the sample speed required. Most drivers end up reading the mouse
movement via IRQ (like timer 1) or via a specialized DLI routine. If the mouse is not sampled quickly
enough, it will tend to drift or track backwards. Unfortunately, this can eat up a lot of processor time,
leaving very little time for other purposes. However, Marcin Lewandowski posted a new method of
reading the mouse that is not as CPU intensive. His article is included below.

The main procedure below must be continuously called. Fortunately, the VBlank interrupt is fast enough
to do this. After a long break, the init procedure must be called to force synchronization.

Main proc:

The main routine above only handles the horizontal axis. The vertical axis is identical, except for the
following replacements: change xind to yind,;xcur to ycur; and htab to vtab.

The initialization routine is listed below:

lda $d300
 lsr a
 lsr a
 lsr a
 lsr a
 pha
 and #10 ; (#3 in ST)
 ldy #3 ; check left-right move
l1 cmp htab,y
 beq l2
 dey
 bne l1
l2 tya
 clc
 adc #1
 and #3
 cmp xind
 bne l3
 sty xind
 dec xcur
l3 tya
 sec
 sbc #1
 and #3
 cmp xind
 bne l4
 sty xind
 inc xcur
l4 pla
 and #5 ;(#12 in ST)

init
 lda $d300
 lsr a
 lsr a
 lsr a
 lsr a
 pha
 and #10 ; (#3 in ST)
 ldy #3
i1 cmp htab,y

The tables referenced by the above code vary depending on the mouse being used.

 Amiga: Atari ST:
htab: 0,2,10,8 0,2,3,1

vtab: 0,1,5,4 0,8,12,4

Oddly, no emulator currently supports the use of a mouse, so this will only work on real hardware.

Note that the Atari can only read the left mouse button of an unmodified mouse.

However, a simple hardware modification on the ST mouse allows its younger cousin to read the
second mouse button by watching POT1 to be pulled low. To prepare the ST mouse for use, turn the
mouse over and remove the screws. Find where the cable is connected to the printed circuit board,
then take a 4.7 kilohm or 5.6 kilohm. resister and stick one leg into the hole where the red wires is and
the other one where the white one is. When you press the right mouse button, the value of POT1
should change from 228 to a value below 9.

Pushing POKEY
Digital samples
POKEY is capable of playing digital sound by setting the channel to volume only and then rapidly
storing values into the volume register. Volume on the Atari is only a 4-bit register, so digital samples
are limited to 4-bit resolution. Although it limits the sound quality possible, it does halve the memory
requirement per sample. The first digital sampling and playback routines I used came with an interesting
device called the Parrot.

This device plugged into the joystick port on the Atari and was read as a paddle. By rapidly sampling
POT0 and storing this into memory, the Atari was capable of recording and playing back digital
samples. Now, however, it is easier to record a sound on the PC (or rip from another source) and
convert it into the appropriate format for the Atari.

Sample conversion is easiest to do in steps. The first is to convert the original sound into an unsigned
8-bit sound at an appropriate sample rate. For the playback routine described below, this should be
about 3.9khz.

Initial sample conversion can be performed with a tool such as sox.

Depending on the sound source, it may be a good idea to add a low-pass filter when downsampling.
See the soxexam man page for more details.

Once a sound is in unsigned raw 8-bit format at the appropriate sample rate, a second conversion pass
needs to be mad to convert the raw sound to 4-bit big-endian sample. A program to do this is included
in the iron archives called rawtoatari. rawtoatari simply reads in each pair of bytes from the input file,
strips off the lower nibble, and combines the bytes into a single byte in big-endian format. Here is a
quick C snippet to do this:

i1 cmp htab,y
 beq i2
 dey
 bne i1
i2 sty xind
 pla
 and #5 ; (#12 in ST)
 ldy #3
i3 cmp vtab,y
 beq i4
 dey
 bne i3
i4 sty yind

sox infile.wav -t raw -r 3900 -u -b -c 1 outputfile.raw

#include <stdio.h>

int main(int argc, char argv) {

 FILE *in, *out;

 unsigned char a,b;

 int c=0;

 if (argc!=2)

 return -1;

 in=fopen(argv,"rb");

Once an Atari native sample has been created, a playback routine is required before it is useful. The
more CPU time can be devoted to the task of playback, the clearer the sample will be, and the higher
sample rate can be used. Optimally, the playback routine should shut-off the DMA, and all non-vital
interrupts and devote complete time to playback. However, realistically, a game or demo will want to
display something on screen. So, a compromise must be made. One method used by Chris Hutt in his
Space Harrier conversion is to use the VCOUNT register to synchronize playback, creating a solid
playback frequency. (Note: this routine has since been replaced with in Space Harrier XE. Now, the
sample playback is preformed via IRQs) Another possibility is to include the playback inside of a DLI
routine.

 in=fopen(argv,"rb");

 if (!in)

 return -1;

 out=fopen(argv,"wb");

 if (!out)

 return -1;

 printf("Converting '%s'...n",argv);

 while(!in.feof()) { / Conversion routine */

 a=(fgetc(in)&0xf0)|((!feof(in)?fgetc(in):0))>>4;

 fputc(a,out);

 c++;

 }

 fclose(in);

 fclose(out);

 printf("Wrote %d bytes to file '%s'.n",c,argv);

 return 0;

}

; play_sample, a routine to slave processor to play digital sample
; taken from the Space Harrier conversion project
; (c) Chris Hutt, 2000-2004
play_sample
 .local
 lda #0
 tay ; 1st byte of sample data
 sta sample_nibble ; initialize counters
 sta sample_index
?0a
 lda #80
 cmp VCOUNT
 bne ?0a
 sta next_vcount
?0 ; setup vcount value to wait
 lda next_vcount
 clc
 adc #2
 cmp max_vcount ; max value of vcount is 130 or 155 on PAL
 bcc ?1
 sbc max_vcount ; wrap to 0 if 131/155 or 1
?1
 sta next_vcount
 lda sample_nibble
 eor #1 ; toggle nibble count between 0 and 1
 sta sample_nibble
 beq ?2

 ; handle high nibble of data
 lda (sample),y
 lsr a
 lsr a
 lsr a
 lsr a ; shift high nibble into lo byte
 ora #16 ; turn on volume only bit
 tax
 bne ?4 ; always branch

 ; handle lo nibble of data
?2
 lda (sample),y
 and #15
 ora #16
 tax
 iny ; increment byte pointer for next byte
 bne ?3
 inc sample+1
?3
 lda sample+1
 cmp dest_A+1
 bne ?4
 cpy dest_A
 beq ?6
?4
 lda next_vcount ; wait for specified vcount. 3.9khz is every 2
?5
 cmp VCOUNT
 bne ?5
 stx AUDC3 ; play sample
 jmp ?0 ; always loop
?6

Digital Sample Links and Resources
(Note: Update to Sheddy's new IRQ player)

Trackers
RMT
A RMT module file is standard Atari binary file with from-to head data, because it contains many tables
of pointers (with absolute memory values, not relative values). If you save the music with function "Save
as.../RMT file", the module will use a hard-coded default address – starting at address $4000.

If you want use RMT music in your program, you should use "Export as.../RMT stripped file". Then you
can specify an arbitrary location for your RMT module data. In addition, this will only save the features
used by the module, without any redundant bytes, instrument names, unused songs, and so on.

(Using RMT engine for sound effects in-game as well as for music)

TMC2
The Theta Music Composer is a tracker that runs on native hardware.
http://jaskier.atari8.info/menu2/TMC2/TMC2.zip

Soft Sprites
Bitmap sprites
Consider massively unrolled loops, hard-coded sprite data, and preinitialized zero page vectors (from
NRV's softsprite thread on AtariAge)

Character sprites
(Turrican, BeyondEvil, etc)

Advanced Player/Missile Use
ORA overlapping for color
Player/missile graphics and playfield graphics can be made to mix. Set the lower nibble of GPRIOR to
0, and playfield 0,1 and players 0,1 combine their colors by “or'ing” the colors together. Playfield 2,3
and players 2,3 are also “or'd.”. Used in combination with soft-sprites above, this can be used to create
modern looking avatars.

Note that setting bit 5 causes the same behavior between players. ANTIC will performs a logical OR of
colors of players 0/1 and 2/3 when they overlap. If the overlap option is not set, the area of overlap for
all players will be black. (Really? Mapping the Atari claims this, but I do not remember this being the
case)

GTIA Gr. 9 overlay
GPRIOR set to $50 in GTIA 9enables missile "OR" mode, in which overlapping missiles on GTIA mode
9 cause transparency effects.

Reusing players
changing position, color AND shape of a single PM on a single line

Collision detection

?6
 lda #0
 sta AUDC3 ; switch off volume only
 rts

http://jaskier.atari8.info/menu2/TMC2/TMC2.zip

hardware registers no longer mean anything, use masks, bboxes, etc.

Hardware exotics
Accessing additional memory
Document laying around somewhere on this (see 8-bit news FAQ?)

Double POKEY
No idea at all

Double GTIA
In development - no idea at all

Video Board XE
Electron (aka Tomasz Piórek) has been working on a project that adds a new video card to the Atari
computer. This works along side the GTIA chip, but adds several new features, including a sprite blitter
capable of displaying sprites in 256 colors ranging in size from 1x1 to 256x256. For more current
information, video clips of current output and more, visit the current homepage at http://vbxe.atari8.info/.

Ironman Contributors
Analogue Multiplexer (Analmux): MWP
Fox/Tarquat (Piotr Fusik): GTIA 9++
Heavan/Tarquart: HIP,TIP
Sheddy (Chris Hutt): digital sample playback
Jaskier/Taquart (Marcin Lewandowski): mouse driver
Mathy van Nisselroy: hardware mouse modifications
Mark Schmelzenbach, editor

VERSION 1.47 LAST MODIFIED BY CARSTEN STROTMANN ON 14/04/2008 AT 21:01

http://vbxe.atari8.info/
http://atariwiki.strotmann.de/xwiki/bin/view/XWiki/CarstenStrotmann

