—
==
-

N-LINE

Getting in on the Action!

by Russ Wetmore

Action! is an Atari programmer’s dream come true.
It is a language not too unlike C or Pascal, but which
compiles to very “tight” 6502 machine language. Clint
Parker, the author of Action!, has fashioned a remark-
able programming environment, where editor, com-
piler and monitor are all resident at once.

Write your program, compile it, run to test it, then
dump right back into the editor with your source code
intact, to start making corrections. I've done a cou-
ple of major projects using Action! in the past year
and can recommend it without hesitation to any seri-
ous (or casual) Atari programmer.

There are several caveats in creating really big pro-
grams (larger than 16K), because of the integrated
environment. If you're planning to write such pro-
grams, it's necessary to know how Action! creates
object code from vour source, in order to maximize
memory usage. There are also a few bugs that need
to be noted.

In this article (and the one next month), I'll show
vou some tricks I've learned to optimize Action!’s out-
put, These comments all apply to version 3.6 —they
may work on other versions of the compiler, but have
not been tested. They also assume a working know-
ledge of Action!

ANALOG COMPUTING

&

Variable allocation.

Allocating free memory.

There isn't a function in Action! that approximates
BASIC's FRE(0) command. It isn't as simple as check-
ing the monitor to see where the end of your program
is, because Action! tries to help you out by placing
some non-initialized arrays beyond the end of vour
program code, instead of inside your program, where
they're declared (specifically, CARD ARRAYs and,
generally, BYTE ARRAYs over a page in length).

Luckily, there's an easy method for determining
where the end of the program and variable space ac-
tually is. The first CARD ARRAY declared in a pro-
gram is the last actually allocated during compilation.

MODULE ; Sample 1

CARD
MEMTOP=%2ES, freemen=I[0]
CARD ARRAY
EndofProgramti)

PROC Maini)
freemeM=—MEMTOP - EndOfProgram
PrintF("Total free Wmemory=-XxUXE",
freemen)
RETURN

Static ARRAY variables.

Action! allows you a lot of choices when it comes
to variable declaration. For example, ARRAY variable
names are actually pointers to the ARRAY space. This

JULY 1985 / PAGE 23

"% ON-LINE continued

allows you to do such esoterics as:
MODULE ; Sample 2

CHAR ARRAY
stri="This is a test.", str2

PROC Main()
str2=stri
PrintEd(stra)

RETURN

When you run the program, you'll find that strl
and str2 both “equal” the same string. This is possi-
ble because Action! also allocates a pointer to the AR-
RAY, in addition to the ARRAY data itself. When you
assign str2 to strl, you're actually just assigning str2’s
pointer equal to strl’s, which is pointing to the AR-
RAY data.

In many cases, though, this overhead costs mem-
ory for arrays that you're never going to reassign,
such as string constants. Also, if you were to refer-
ence the ARRAY name in a code block, you'd have
to go through contortions in order to get to the actu-
al data, because the ARRAY name equals a pointer

to the data, which you'd have to access indirectly.
Clint very thoughtfully put in a construct that allows
you to declare ARRAY variables without the associ-
ated pointer. Declare the ARRAY with a predefined
length of 0. For example:
CHAR ARRAY
strif{@i="This is a test."

You won't be able to reassign strl (you'll get an er-
ror if you try), but you will have saved 2 bytes you
probably never would have used, anyway. You'll also
save 2 bytes every time you reference the ARRAY,
because Action! will compile the reference as imme-
diate loads of registers, as opposed to indirect fetches
from memory. For example:

MODULE ; Sawmple 3a

CHAR ARRAY
stri="This is a test."™

PROC Main()
PrintE(stri)
RETURN

compiles to:

WHAT IS
CHECKSUM DATA?

Most program listings in ANALOG Computing are followed by a table of numbers appearing as
DATA statements, called “CHECKSUM DATA." These numbers are to be used in conjunction with
D:CHECK and C:CHECK (which appeared in ANALOG Computing issue 16 and the ANALOG

Compendium) or with Unicheck (from issue 24).

D:CHECK and C:CHECK (written by Istvan Mohos and Tom Hudson) and Unicheck (by Tom
Hudson) are designed to find and correct typing errors when readers are entering programs from
the magazine. For those readers who would like copies of these articles, you may send for back
issue 16 or 24 ($4.00 each) or the ANALOG Compendium ($14.95 plus $2.00 shipping and han-

ANALOG Computing
PO. Box 615
Holmes, PA 19045

dling from:

FAGE 24 / JULY 1985

ANALOG COMPUTING

MAIN LDA stri
LDX striti
JSR PrintE
RTS

whereas the following:
MODULE ; Sample 3b

CHAR ARRAY
Stri(e)="This is a test."

PROC Main()
PrintE(stri)
RETURNMN

compiles to:

MAIN LDA H{stri
LDX mistri
JSR Printk
RTS

For similar reasons, you may save memory if you
predeclare all your variables, ARRAYs or otherwise.
For example, when you declare a BY TE variable, vou
can set its memory address in the declaration. Any
variables that follow it in the same statement, though,
have extra overhead associated with them. (You can
see this effect in the following example.) To test all
of these constructs, you can compile a test program
then execute the command ?$493 from the monitor,
to see the program’s length. Try this with the follow-
ing two examples:

MODULE ; Long example

BYTE
COLOR1=S52C4, i, j, k
CARD
MEMTOP=52ES5, c, d, e
CHAR ARRAY
stri="Testi", str2=""Test2"

PROC Main()
RETURMN

MODULE ; Shorter example
BYTE

COLOR1=52C4, i=[01, j=[01, k=I8]
CARD

HEHTBPnSZES, c=[81, d=[8]1, e=[0]
CHAR ARRA

striti)-"!estl" sStrz{e)="Testa"

PROC MainQ)
RETLURN

You'll find that the second example ends up being
19 bvtes shorter than the first.

A string shortcut.

If yvou work with strings at all, you probably know
that the length of a declared string is always the first
(“zeroth”) byte of the ARRAY. As such, vou probably
use a construct similar to:

ANALOG COMPUTING

MODULE ; Sample 4a

CHAR ARRAY
stri="Test"

PROC Main(Q)
PrintF(""Length of %5 is XUYE",
stri, stri(el)
RETURN

You can save considerable memory (11 bytes each
occurrence!) by declaring a separate BY TE variable:

MODULE ; Sample 4b

CHAR ARRAY
stri="Test"

BYTE
strilen=stri

PROC Main()
PrintF{"Length of %5 is XUYXE",
stri, strilen)
RETURM

By making the declaration strilen = str1, we're sel-
ting strilen’s memory location equal to the “zeroth”
byte of str1, hence strilen will always be equal to the
length of str1 (if vou don't point str1 elsewhere). The
reason for the memory savings is simple. In the first
example, the compiler is given the address of the start
of the ARRAY and an offset to the actual byte desired.
This compiles to something similar to:

LDA stri :Fetch address of array
5Th SAE :Save for indirect ref
LDA stri+l ;;Fetch high byte

SThA SAF :5ave...
iHe want @'th element

LEY B

LDA (SAE),Y :;Fetch string length

If we declare a BYTE variable outright, though, it
will already be pointing to the proper memory loca-
tion, and no caleulation is needed to find it. Thus,
the compiler produces something like:

LDA strilen ;Fetch string length

which, I think vou'll agree, is much cleaner. You can
apply this principle to any portion of a declared AR-
RAY that isn't going to move, that vou need (o access.

PROC and FUNC addressing.

In the Action! manual, reference is made to “ad-
dressing routines.” Besides the example given, there's
little said about how useful this construct can be.

Forward references.

Action! is a one-pass compiler. Most compilers use
a two-pass method, where the entire source program
is scanned first to build a symbol table of variable
addresses. Thus, on the second pass, if a variable is
used before it is declared, the compiler can look it
up in the symbol table to find its address.

Action!, however, only makes one pass through a
program for speed reasons. This means that every

JULY 1985 / PAGE 25

._-.. ON 'LINE continued

procedure or function is supposed to be previously
declared before vou reference it. Sometimes this isn't
feasible, bul how do you get around it?

One other feature of Action! is the ability to re-
assign PROCs and FUNCs to different memory loca-
tions from where they are first compiled. If you run
the following example:

MODULE ; Sample S
PROC Numi() PrintE("ONE") RETLURN
PROC NumWZ() PrintE("THO") RETURN

PROC Ma:in()
NumZ=-Numl Numz)
RETURN

vou'll get the result one printed to the screen, be-
cause we've “pointed” Num2 to Num1's address. Us-
ing this same concept, we can forward reference a
PROC or FUNC before it is declared!

MODULE ; Sample 6

PROC DUMMY ()

PROC Numl() DUMMY () RETURN

PROC Num2() PrintE("THO") RETURN

PROC Maini()
DUMMY=NumZ MNumi()
RETURN

In Num1, we've actually forward referenced Num?2
indirectly, by setting DUMMY to be equal to Num2.

An indirect detriment.

Unfortunately, as in the case of non-initialized AR-
RAYs, the overhead for such indirection is the default
case. I have very rarely used the addressing feature
and, even then, only in cases where | was too lazy
to redo the necessary routines properly.

Action! compiles normal PROC references in a
manner similar to this example:

MODULE ; Sample 7

BYTE
tTest
PROC DUMMY O
RETURN
PROC Main()
PrintBE(test)
RETURN
test 05 1

DUMMYvec JMP DUHMMY
DUMMY RTS

Mainvec JMP Main

Main LDA test
JSR PrintBE
RTS

PAGE 26 / JULY 1985

If you were to do the assignment DUMMY =Main,
what the compiler would actually produce is:

LDA H{Main

S5TA DUMMYvec+1

LDA H>Main

5TaA DUMMYvec+2
so that the resulting code at DUMMYvec would ac-
tually become JMP Main. If you don’t ever use this
feature, though, every time you declare a PROC or
FUNC, vou're actually throwing in a [MP to the next
instruction.

The way to avoid this automatic inclusion of the

JMP command is to use the construct:

PROC procname=¥()

You save three bytes and a little overhead in speed
when you declare routines this way. One important
note—this congtruct will not work if you're passing
variables to a routine, unless the first thing encoun-
tered in the routine is a code block. This is because
of the way that Action! handles saving its zero-page
working variables.

Modularizing programs.

You can also use this construct to “modularize”
your programs. This is important if you're trying to
compile large programs. Frequently, you'll run out
of symbol table space or, worse yet, run out of mem-
ory to compile to because the cartridge eats 8K of
space itself, in addition to other overhead.

You can compile all of yvour constant strings and
low level routines, for example, separately from your
main program and reference them in your program
through equates and routine addressing. You can then
use the SET command in the second module to com-
pile the second module above the first, then append
vour files together to get the final object file. I'll go
more into detail on how to do this next issue.

Also, next time I'll cover ARRAYs of ARRAYs
(string ARRAYs, for example), an Action! version of
BASIC's “ON x GOSUB” and "ON x GOTQO" com-
mands, plus other surprises. [

Russ Wetmore has been involved in the home com-
puter industry for over six vears. He's probably most
widely known for his best-selling, award-winning
Atari game program Preppie! He has also shown his
talent as a composer/arranger whose work has been
heard on national TV. Russ is President of Star Sys-
tems Software, Inc., a research and development firm
specializing in entertainment and home productivity
programs for a host of computers.

ANALOG COMPL_I'_I’_I_{*_JG

