

 DRAPER PASCAL

 Version 2.1

 Copyright 1989

 by Norm Draper

 For the Atari 400, 800, XL, or XE series computers

This is the complete Draper Pascal manual. It is only provided to registered users of
Draper Pascal. No part of this manual may be reproduced without the consent of the
author, unless done for backup purposes.

Draper Pascal 2.1 Introduction

 Page 1

 Table of Contents

Note: An asterisk (*) following the page number indicates that the item was either not
present, or only briefly explained, in the "Starter" version of the Draper Pascal manual.

Introduction ... 6

What is Pascal? .. 6

What is Draper Pascal? ... 6

About this manual .. 6

What is Draper Pascal made of? ... 6

About the DOS ... 7

The Shareware Concept .. 7

Ramdisk support ... 8

Diskette preparation ... 8

Using the Ramdisk feature .. 8

Getting Started ... 10

Main Menu .. 17

1 - Run Program.. 18

2 - Disk Directory .. 18

3 - Compile Program ... 18

4 - Edit a Program .. 18

5 - Exit to DOS ... 18

6 - List a file .. 19

7 - Trace on ... 19

The Editor ... 20

General Prompts .. 21

A - Add line(s) at end .. 22

C - Change line(s) .. 22

D - Delete line(s) ... 22

E - Edit line(s) .. 22

F - Filer menu ... 23

A - Append file .. 23

D - Directory list ... 23

L - Load file .. 23

S - Save file .. 23

I - Insert before line .. 23

L - List line(s) .. 24

M - Menu.. 24

P - Print line(s) .. 24

Draper Pascal 2.1 Introduction

 Page 2

Q - Quit .. 24

S - Scan line(s) ... 24

X - Exit to Compiler .. 25

The Compiler ... 25

The Supervisor ... 28

Pascal Definitions ... 29

ABS .. 29

ADDR ... 29

AND .. 29

ARCTAN ... 30

ARRAY .. 31

ASC .. 31

BEGIN .. 32

BLOAD .. 32

BOOLEAN .. 34

CALL .. 35

CASE ... 35

CHAR ... 36

CHR .. 37

CLOSE .. 37

COLOR .. 38

CONCAT ... 38

CONST .. 38

COPY ... 39

COS .. 39

CVTREAL ... 40

DEG .. 40

DELETE .. 41

DIV .. 41

DOS .. 42

DRAWTO .. 42

DUMPSTK .. 43

DVSTAT .. 43

END .. 44

EOF .. 44

EOLN ... 45

EXIT .. 46

EXP ... 46

EXP10 .. 46

FALSE ... 47

FILE .. 47

FOR .. 47

Draper Pascal 2.1 Introduction

 Page 3

FUNCTION ... 48

GOTOXY ... 48

GRAPHICS ... 49

HIMEM ... 50

IF.. 50

INSERT ... 51

INTEGER .. 51

IORESULT ... 51

KEYPRESS .. 52

LENGTH.. 52

LN .. 53

LOCATE .. 53

LOCK ... 54

LOG .. 54

LPENH ... 55

LPENV ... 55

MAXGRAPH .. 55

MOD ... 56

NOT .. 56

NOTE ... 56

ODD .. 57

OPEN ... 58

OPTIONKEY .. 58

OR ... 61

ORD .. 61

PADDLE .. 62

PEEK.. 62

PLOT .. 63

POINT .. 63

POKE ... 63

POS .. 64

PROCEDURE .. 64

PROGRAM ... 66

PTRIG .. 66

PURGE .. 66

RAD .. 67

READ ... 67

READLN ... 67

REAL .. 67

RECORD ... 68

REPEAT .. 69

RESET ... 70

Draper Pascal 2.1 Introduction

 Page 4

REWRITE ... 70

RND .. 70

SELECTKEY ... 71

SETCOLOR ... 71

SHL ... 72

SHR .. 72

SIN .. 73

SQR .. 73

SQRT ... 74

STARTKEY .. 74

STATUS .. 74

STICK .. 75

STR ... 75

STRIG .. 76

STRING ... 76

TRACEOFF .. 77

TRACEON .. 77

TRUE .. 78

UNLOCK ... 78

VAL ... 79

VAR .. 79

WAIT .. 80

WHILE ... 80

WRITE ... 81

WRITELN .. 81

XCTL .. 83

XIO .. 84

System Information .. 86

Filename Descriptions ... 86

Internal Data Formats ... 86

Suppressing the Title Screen ... 87

Trace Format .. 88

Reserved Word List .. 89

Operators .. 89

Editor Command Summary .. 91

Error Messages .. 92

Compile Time Error Messages ... 92

Execution Time Error Messages ... 94

INDEX TOO HIGH .. 94

UNABLE TO OPEN DEBUG IOCB (7) .. 94

CIO ERROR xxx FOR IOCB # y.. 94

AT OFFSET .. 94

Draper Pascal 2.1 Introduction

 Page 5

STOPPED BY <BREAK> KEY ... 94

INSUFFICIENT MEMORY .. 94

INVALID OPCODE ... 95

Main Menu Program ... 96

Editor Program ... 100

Editor Program Source Listings .. 100

EDITOR.PAS .. 100

EDITOR1.PAS ... 100

EDITOR2.PAS ... 101

EDITOR3.PAS ... 103

EDITOR4.PAS ... 104

EDITOR5.PAS ... 105

EDITOR6.PAS ... 106

EDITOR7.PAS ... 108

Ramdisk Programs .. 110

RAMDISK.PAS .. 110

COPYFILE.M65 ... 111

Sample Programs .. 113

SAMPLE1.PAS .. 113

SAMPLE2.PAS .. 113

Printer Usage .. 115

Printer usage with Draper Pascal ... 115

Software License .. 117

Draper Pascal 2.1 Introduction

 Page 6

 Introduction

Draper Software welcomes you to the world of Pascal for the Atari 400/800, XL, and XE
series Computer systems.

 What is Pascal?

Pascal is a high-level structured programming language developed by Niklaus Wirth in
1971. It is easy to understand and well suited for program development and
maintenance.

 What is Draper Pascal?

Draper Pascal is not a "standard" Pascal. It has a number of commands which are exactly
like ISO and UCSD versions, some which are similar, and many "extensions" which bring
out the true power of the Atari computer in an easy to use manner. It was designed to
require only one disk drive for operation, but not be limited to only one. At this time, it has
been shown to work with all hardware and software configurations where enough
memory is provided. This implementation also has a number of commands which are
familiar to Atari BASIC users, such as POKE, PEEK, SETCOLOR, NOTE, POINT, etc..

 About this manual

This manual is intended to familiarize you with all the features of Draper Pascal. It is not
intended to teach you how to program in Pascal. However, if you already know Atari
BASIC, then you can understand the Pascal statements more easily by referring to their
BASIC equivalents shown after the definition of each Pascal reserved word. It is
recommended that you read this manual completely to be familiarized with its features
and restrictions.

 What is Draper Pascal made of?

This implementation of Pascal is made up of three main components. They are the
Supervisor (sometimes referred to as runtime routines), the Compiler, and the Editor. The
Supervisor is a high performance machine language program which simulates a 16-bit
pseudo computer. The Compiler translates Pascal source code into pseudo-code
instructions to be executed by the Supervisor. The Editor is used to enter and modify
Pascal source programs. It may also be used to edit data files, or BASIC programs which
have been LISTed to a disk or tape. These components are explained in detail within this
manual.

For a description of the various files included on the supplied diskette, refer to the
"System Information" section of this manual.

Draper Pascal 2.1 Introduction

 Page 7

 About the DOS

Draper Pascal can be used with most popular Disk Operating Systems. It has been tested
with Atari DOS 2.5, SpartaDOS 3.2d, and MYDOS. You should format a diskette with
DOS on it to contain the Draper Pascal system. Since the Draper Pascal Supervisor is
named AUTORUN.SYS, it will execute immediately after the disk is booted. For XL and
XE computers, you do not need to hold down the Option key while booting unless you are
using SpartaDOS. If using SpartaDOS, you may want to rename AUTORUN.SYS to
PASCAL.COM and create a STARTUP.BAT file containing the following two lines:

 BASIC OFF
 PASCAL

 The Shareware Concept

Draper Pascal is distributed on a Shareware basis.

You may freely copy Draper Pascal for distribution under the Shareware concept, without
charge.

You may NOT charge any fee for the Draper Pascal program or documentation without
our written approval.

You may NOT distribute Draper Pascal or it's documentation in connection with ANY
commercial venture, product, publication or service unless you read, sign, and send in
the royalty-free license included with this manual.

Draper Pascal 2.1 Ramdisk support

 Page 8

 Ramdisk support

Draper Pascal supports the use of the "Ramdisk" capability provided by using a DOS that
supports a ramdisk like Atari DOS 2.5 or SpartaDOS 3.x with an Atari computer system
having sufficient memory to support the ramdisk. While using this feature, the Editor
takes less than two seconds to load and the Compiler takes less than three seconds.

 Diskette preparation

 for Ramdisk support

To utilize the ramdisk support, you must make sure the DOS on your Draper Pascal
diskette has everything in place to create the ramdisk. For example, with Atari DOS 2.5
make sure the disk also contains RAMDISK.COM. For SpartaDOS 3.x, you will need
RD.COM (or RD260.COM). These programs are provided with your Disk Operating
System (DOS).

To activate the Ramdisk feature for Draper Pascal 2.1, use your version of DOS to
rename the following three files. Consult your DOS manual if you need instruction on
how to do the rename.

Rename From this name: To this name:

RAMDISK1.DAT COPYFILE.OBJ
RAMDISK2.DAT COPYLIST.TXT
RAMDISK3.DAT RAMDISK.PCD

 Using the Ramdisk feature

To use the Ramdisk feature, do the following:

1 Boot your diskette and initialize the ramdisk. With Atari DOS 2.5, this would be done
automatically if RAMDISK.COM is present on the diskette at boot time. With SpartaDOS
3.x, you must execute RD.COM (or RD260.COM) specifying D8: as the drive number for
the ramdisk. If you wish to use a drive number other than 8, you must first edit
COPYLIST.TXT and change the second line to contain the desired drive number. With
SpartaDOS 3.x, ramdisk intialization could be done automatically by adding RD D8: to the
batch file STARTUP.BAT mentioned above.

2 Start Draper Pascal.
3 Enter '1', for Run Program, followed by the name RAMDISK (since RAMDISK.PCD is to
be executed). If an Error 138 occurs, it indicates that the ramdisk drive has not been
properly initialized. An Error 170 might occur if one of the files being copied to the ramdisk

Draper Pascal 2.1 Ramdisk support

 Page 9

is not found. This could happen if you renamed AUTORUN.SYS to PASCAL.COM as
mentioned in "About the DOS" , above. If this is the case, verify that each file name
contained within COPYLIST.TXT is spelled correctly.

That's all there is to it. Your default drive will be set to the ramdisk drive number. This
means that if you edit, run, or compile a program and don't specify a particular drive
number (Dx:), the default will be assumed.

The RAMDISK program works as follows:

1. The source (input) disk drive number is read from file COPYLIST.TXT.

2. The target (output) disk drive (ramdisk) number is read from file COPYLIST.TXT.

3. A check is made to see if the ramdisk already contains one of the programs to be

copied. If so, processing continues with step 6, below.

4. A machine language fast file copying subroutine (COPYFILE.OBJ) is loaded into

memory.

5. Each remaining record of file COPYLIST.TXT is read and the corresponding file is

copied from the source drive to the target drive.

6. The default drive indicator is set to be the target drive number.

The source code for this program (RAMDISK.PAS) and the file copy subroutine
(COPYFILE.M65) are printed with the other source code listings in this manual.

Draper Pascal 2.1 Getting Started

 Page 10

 Getting Started

This section is intended to show by example how to use the Draper Pascal system. You
will edit, compile, and run a sample program. Information displayed by the computer is
shown in normal type while responses to be entered by you are shown underlined with
dashes (---). To begin with, make sure you have 48K RAM installed and no cartridge in
place. Boot the disk now by placing it in disk drive 1 and turning on the power to the Atari
computer. After the Supervisor has finished loading, you will see a screen that looks like
this:

 DRAPER PASCAL

 VERSION 2.1

 1 - Run Program

 2 - Disk Directory

 3 - Compile Program

 4 - Edit a Program

 5 - Exit to DOS

 6 - List a file

 7 - Trace on

 Copyright 1989

 by Norm Draper

 4 Select the Editor

 DRAPER SOFTWARE

Draper Pascal 2.1 Getting Started

 Page 11

 EDITOR

 A - Add line(s) at end

 C - Change line(s)

 D - Delete line(s)

 E - Edit a line

 F - Filer menu

 I - Insert before line

 L - List line(s)

 M - Menu

 P - Print line(s)

 Q - Quit

 S - Scan line(s)

 X - Exit to Compiler

A,C,D,E,F,I,L,M,P,Q,S,X,?->F Select Filer menu

 A - Append file

 D - Directory list

 L - Load file

 S - Save file

 L

Load a file

Enter filename -> SAMPLE1

Enter the name of the file to be loaded.
The name of the last file edited, compiled,
or run will be filled in by the Editor. You
may have to overtype it with the name
shown.

A,C,D,E,F,I,L,M,P,Q,S,X,?->L

List the file on the screen

Line from ->

Line to ->

Just press RETURN for 'Line from' and
'Line to'. This will give a list of the entire
program in memory.

Draper Pascal 2.1 Getting Started

 Page 12

 1:PROGRAM KALEIDOSCOPE;

 2:VAR I,J,K,W,X:INTEGER;

 3:BEGIN

 4: MAXGRAPH(19);

 5: GRAPHICS(19);

 6: X:=0;

 7: REPEAT

 8: FOR W:=3 TO 50 DO

 9: BEGIN

 10: FOR I:=1 TO 10 DO

 11: BEGIN

 12: FOR J:=0 TO 10 DO

 13: BEGIN

 14: K:=I+J;

 15: COLOR(J*3/(I+3)+I*W/12);

 16: PLOT(I+8,K);

 17: PLOT(K+8,I);

 18: PLOT(32-I,24-K);

 19: PLOT(32-K,24-I);

 20: PLOT(K+8,24-I);

 21: PLOT(32-I,K);

 22: PLOT(I+8,24-K);

 23: PLOT(32-K,I)

 24: END

 25: END

 26: END

 27: UNTIL X=99 (* UNENDING LOOP *)

 28:END.

A,C,D,E,F,I,L,M,P,Q,S,X,?->I Let's insert a comment before line 15.

Line -> 15

15: (* MY FIRST EDIT *)

16:

Enter the data to be inserted when
prompted for line 15. Just press RETURN
 when prompted for line 16. This will
terminate insert mode.

A,C,D,E,F,I,L,M,P,Q,S,X,?->L

List again to verify that the change was
made correctly.

Line from ->

Draper Pascal 2.1 Getting Started

 Page 13

Line to ->

 1:PROGRAM KALEIDOSCOPE;

 2:VAR I,J,K,W,X:INTEGER;

 3:BEGIN

 4: MAXGRAPH(19);

 5: GRAPHICS(19);

 6: X:=0;

 7: REPEAT

 8: FOR W:=3 TO 50 DO

 9: BEGIN

 10: FOR I:=1 TO 10 DO

 11: BEGIN

 12: FOR J:=0 TO 10 DO

 13: BEGIN

 14: K:=I+J;

 15: (* MY FIRST EDIT *)

 16: COLOR(J*3/(I+3)+I*W/12);

 17: PLOT(I+8,K);

 18: PLOT(K+8,I);

 19: PLOT(32-I,24-K);

 20: PLOT(32-K,24-I);

 21: PLOT(K+8,24-I);

 22: PLOT(32-I,K);

 23: PLOT(I+8,24-K);

 24: PLOT(32-K,I)

 25: END

 26: END

 27: END

 28: UNTIL X=99 (* UNENDING LOOP *)

 29:END.

A,C,D,E,F,I,L,M,P,Q,S,X,?->F

Let's save the program back to disk drive
1 under the same name.

 A - Append file

 D - Directory list

 L - Load file

 S - Save file

 S

Enter filename -> SAMPLE1

Draper Pascal 2.1 Getting Started

 Page 14

A,C,D,E,F,I,L,M,P,Q,S,X,?->X

Now let's exit directly to the Compiler.

 Draper Software

 Pascal Compiler

 Version 2.1

 Copyright 1989

 by Norm Draper

 Enter Filename:

 SAMPLE1

Enter name of program to be compiled.
The name of the last program edited,
compiled, or run will be filled in by the
Compiler.

Enter List Output Filespec

Default is E:

Just press RETURN at this point to have
the compile list directed to the screen.

0000 PROGRAM KALEIDOSCOPE;

0000 VAR I,J,K,W,X:INTEGER;

0003 BEGIN

0003 MAXGRAPH(19);

0017 GRAPHICS(19);

001B X:=0;

001E REPEAT

0022 FOR W:=3 TO 50 DO

002A BEGIN

0035 FOR I:=1 TO 10 DO

003D BEGIN

0048 FOR J:=0 TO 10 DO

004F BEGIN

005A K:=I+J;

0062 COLOR(J*3/(I+3)+I*W/12);

008A PLOT(I+8,K);

0098 PLOT(K+8,I);

00A6 PLOT(32-I,24-K);

Draper Pascal 2.1 Getting Started

 Page 15

00B8 PLOT(32-K,24-I);

00CA PLOT(K+8,24-I);

00DC PLOT(32-I,K);

00EA PLOT(I+8,24-K);

00FC PLOT(32-K,I)

010A END

010A END

010C END

011C UNTIL X=99 (* UNENDING LOOP *)

0142 END.

0147

ADDR NAME

---- --------

0003 I

0004 J

0005 K

0006 W

0007 X

5 Compiler table entries used

*** Program Execution Completed ***

Highest Stack Address Used = $AFF8

<START>Repeat,<SELECT>Menu,<ESC>Exit

Press the SELECT key at this
point to take us to the main
menu.

 DRAPER PASCAL

 VERSION 2.1

 1 - Run Program

 2 - Disk Directory

 3 - Compile Program

 4 - Edit a Program

 5 - Exit to DOS

 6 - List a file

 7 - Trace on

Draper Pascal 2.1 Getting Started

 Page 16

 Copyright 1989

 by Norm Draper

 1

Select '1' to run the program that was just
compiled.

 Enter name of program to be run

 SAMPLE1

The name of the last program edited,
compiled, or run will be filled in by the
main menu program. Overtype the name
if you want to run a different program.

===

At this point you should have a nice kaleidoscope pattern being displayed on your
television screen. To stop it, press the BREAK key. To repeat execution, press the
START key. To return to the main menu, press the SELECT key. To exit to DOS, press
the ESC key.

Another program, SAMPLE2, is also provided for you to practice with. It will display
Roman numerals for powers of two between 1 and 4096. Compile it, turn on the trace via
the main menu, and run it. After it is finished, press CTRL-T to display the trace table, and
CTRL-S to display the stack contents. When prompted for 'Where? Filespec', enter 'E:'.
For a description of the stack display line, refer to the 'DUMPSTK' command in the
'Pascal Definitions' section of the manual provided to registered users.

Draper Pascal 2.1 Main Menu

 Page 17

 Main Menu

The Main Menu is the initial program to be run by the Supervisor. It is written in Pascal.
The source code is provided for it and you may customize it as you see fit. The disk
filename for the source is 'INIT.PAS'. The pseudo code program that is initially executed
is 'INIT.PCD'. It would be wise to copy 'INIT.PCD' to another name to be used in case
your compile of the menu program is not successful. Or, you could rename INIT.PAS to
something else, like NEWINIT.PAS, and compile it to produce NEWINIT.PCD. Then you
can use the 'run' option (mentioned below) to test your modified program.

The Main Menu appears as follows:

 DRAPER PASCAL

 VERSION 2.1

 1 - Run Program

 2 - Disk Directory

 3 - Compile Program

 4 - Edit a Program

 5 - Exit to DOS

 6 - List a file

 7 - Trace on

 Copyright 1989

 by Norm Draper

Each of the menu options will now be explained:

Draper Pascal 2.1 Main Menu

 Page 18

1 - Run Program

Use this option to execute a program that has previously been successfully compiled.
You will see the following prompt:

Enter name of program to be run

The Main Menu program will fill in the name of the last program edited, compiled, or run.
If this is the one you want, all you have to do is press RETURN. If it is not the one you
want, just overtype the name shown with the one you want.

2 - Disk Directory

This option will provide you with a list of all, or selected, files on one of your disk drives.
You will receive the prompt 'Filespec?'. If you just press RETURN at this point, you will
see a list of all files on the default drive. If you enter 'D2:', you will see all files on drive 2.
To show only selected files, use wildcards in the normal manner. For example, enter
'D1:INIT.*' to show only files named INIT with any suffix from drive one. At the end of the
list, you will be prompted to press any key to continue. After pressing any key, the Main
Menu will be re-displayed.

3 - Compile Program

This option sends you directly to the Pascal compiler. You will be prompted for the name
of the program to be compiled, after the Compiler is loaded. If you have already edited,
compiled, or run a program, the name will be shown and may be used by just pressing the
RETURN key. For more information, refer to the section of this manual on 'The Compiler'.

4 - Edit a Program

Control is transfered to the Draper Pascal Editor when this option is chosen. For more
information, refer to the section of this manual on "The Editor" .

5 - Exit to DOS

Pascal execution is terminated by this option. Control is passed to the Disk Operating
System.

Draper Pascal 2.1 Main Menu

 Page 19

6 - List a file

This convenience entry is provided to allow you to view, on the screen, any text file on
disk or tape. You are prompted to enter the name of the file to be listed. The file is
assumed to reside on the default drive if a colon (:) is not found within the name you
specify. At the end of the list, you will be prompted to press any key to continue. After
pressing a key, the Main Menu will appear again.

7 - Trace on

The wraparound internal trace may be turned on (or off) with this option. The trace is used
only for debugging purposes and may be viewed at program termination time by pressing
CTRL-T. Program execution speed is slightly degraded while the trace is active. You will
be prompted to enter the number of trace entries to be maintained by the system. Each
trace entry requires 10 bytes of storage at the high end of memory. The trace may not be
used during graphics displays because screen memory is also at the high end of memory.
To turn the trace off and remove the memory allocation of the trace table, enter zero
when prompted for the number of entries to maintain. The trace format is described in the
 "System Information" section of this manual.

Draper Pascal 2.1 The Editor

 Page 20

 The Editor

The Editor is used to create, modify, and save Pascal source files. It may also be used to
process other text type files, like BASIC programs which have been LISTed to disk or
tape. It is a line oriented editor. Combined with some type of formatting program, it may
be used for word processing applications. The entire source to be edited must be in
memory at one time. If your Pascal program will not fit within the limits of the Editor, then
you can use the INCLUDE feature of the Compiler to allow segments of a program to be
edited separately. Refer to the section on "The Compiler" for more information on the
INCLUDE feature. Source code for the Editor is listed under "Editor Program Source
Listing" in this manual. Some key points to be noted about this editor are as follows:

1 Each line is referred to by line number, however, no line numbers are stored either
internally or on the disk or tape.
2 Each line may contain up to 80 characters. This may be changed by altering the
constant called MAXLENGTH and re-compiling the Editor. A source listing of the Editor is
provided to registered users.
3 A maximum of 250 lines of text may be edited at one time. This may be changed by
altering the constant called MAXLINES and re-compiling the Editor. An increase in
MAXLINES should correspond with a decrease in MAXLENGTH, and vice versa. A
source listing of the Editor is provided to registered users.
4 When entering or editing a line, the line must be terminated by pressing the RETURN
key.
5 As lines are inserted into, or deleted from, the source file, the remaining lines are
automatically renumbered.
6 A line of source may extend onto more than one screen line.
7 Due to operation of the Atari operating system, a blank line may not be directly entered.
To enter a blank line, you must first enter a non-blank character (like a period), then use
the Editor Change command to change the character to a space.
8 Input operations (Append and Insert) are terminated by entering a null line (just
pressing the RETURN key).
9 The BREAK key is disabled by the Editor to prevent loss of data. It is enabled again at
termination of the Editor.
10 If you enter or change data then try to Quit or exit to the Compiler without first saving
the data onto disk, you will receive an option to either save the data or ignore it and
continue.
11 Cassette tape files may be loaded, edited, and saved by the Editor. The Compiler
does not support tape input, though. You would first have to load the file from tape, with
the Editor, then save it to disk.

 EDITOR COMMANDS

Draper Pascal 2.1 The Editor

 Page 21

 General Prompts

The following prompts are general in nature and are common among many of the editor
commands to be described below.

Line ->

You are prompted to enter one line number, as opposed to a range of line numbers. It is
used by the INSERT Editor command and refers to the line before which the inserted
line(s) will be placed.

Line from ->

This is the first prompt for a range of line numbers. Enter the low number of the range. If
you just press RETURN, line number 1 is assumed.

Line to ->

Enter the high line number in the range desired. If only one line is to be acted upon, that
number must be entered in both this prompt and the one mentioned above. If you just
press RETURN, the highest line number in the buffer will be assumed. If the number you
enter is less than the 'Line from' value, the 'Line from' value will be used here.

Enter filename ->

This prompt is shown when loading, appending, and saving files. The last filename used
is filled in after the arrow. If this is the file you wish to use now, then all you have to do is
press RETURN. A full filespec may be entered, but is not required. If a colon (:) is not
found within the filename specified, then the default drive is assumed. If the filename
given does not contain a period (.), then a suffix of .PAS is assumed.

 The Commands

Draper Pascal 2.1 The Editor

 Page 22

A - Add line(s) at end

This command is used to add lines after the last line currently in the buffer. If the buffer is
currently empty, then line 1 will be assumed as the starting point. In this manner, you can
create a new file if one has not been loaded. You can append as many lines as you like.
When you are finished entering lines, just press RETURN without entering any data on
the line (null line).
Prompts used: None

C - Change line(s)

The Change command allows you to change one specified string pattern to another for
the first occurance in each line within the range of lines specified. After being prompted
for the line number range, you are asked for the data to 'Change from ->' and 'Change to
 ->'. Enter any string of characters at each prompt. Imbedded blanks are allowed. If you
just press RETURN for the 'Change to' prompt, the first occurance of the 'Change from'
data within each line will be deleted.
Prompts used: 'Line from', 'Line to', 'Change from', 'Change to'

D - Delete line(s)

This command allows you to delete a line or a range of lines from the file in memory. The
whole file in memory will be deleted if you just press RETURN when prompted for both
'Line from' and 'Line to'. Be aware that all lines following the range deleted will be
renumbered, to fill the gap just made. If you desire to delete a number of line ranges,
delete those with the highest numbers first and proceed toward the beginning of the file.
That way, you won't have to do a LIST after each range delete to find out what the new
line numbers for the following lines are.
Prompts used: 'Line from', 'Line to'

E - Edit line(s)

The Edit command is used to edit (or make individual changes to) a line or range of lines
that already exist in memory. If a range is specified, the lines are presented to you one
at a time. As each line is presented, you may use any of the normal Atari editing keys (like
right and left cursor, insert, delete), to alter the data. Just press RETURN when you are
finished with each change. If you don't want to make a change to a line shown, just press
RETURN.
Prompts used: 'Line from', 'Line to'

Draper Pascal 2.1 The Editor

 Page 23

F - Filer menu

The Filer is a subsystem which handles communication with an external device (disk or
tape). The features provided are as follows:

A - Append file

A file is read from disk or tape and added to the end of the file currently in memory. The
data in memory prior to the append remains unchanged.
Prompts used: 'Enter filename'

D - Directory list

This command is used to provide a directory list of the different files on a diskette. You
are prompted for 'Filespec?'. Enter the disk drive number and selection criteria for the
directory list. If you just press RETURN you will see a directory list of all files on the
default drive. To see all files on drive two, enter 'D2:' or 'D2:*.*'. To see only files with a
suffix of PAS on drive one, enter 'D1:*.PAS'.
Prompts used: 'Filespec?'

L - Load file

This is the way to load a file into memory from disk or tape. If any data was currently in
memory, it is deleted and replaced by the file read in.
Prompts used: 'Enter filename'

S - Save file

Data is copied from memory to disk or tape with this command. The data currently in
memory remains unchanged. You are prompted for filename and may use whatever
name you wish. It is not necessary to save a file under the same name as was used to
load the file. You should save data to disk frequently if you are making extensive
changes. That way you won't have to re-do as much if something goes wrong.
Prompts used: 'Enter filename'

I - Insert before line

This command allows you to insert one or more lines at any point within the file in
memory. The inserted data is placed before the line number you specify. To terminate
insert mode, just press RETURN without entering any data on the same line (null line).
Note that all lines after the point of insertion will automatically be renumbered.
Prompts used: 'Line ->'

Draper Pascal 2.1 The Editor

 Page 24

L - List line(s)

One or more lines of data from memory are listed on the screen with this command.
During the list, you may stop the scrolling by pressing either the space bar or RETURN.
To resume scrolling, press any other key other than ESC. The ESC key may be pressed
to prematurely terminate the listing.
Prompts used: 'Line from', 'Line to'

M - Menu

The main Editor menu is presented in response to this command. A question mark (?)
may also be used to display the main menu.
Prompts used: None

P - Print line(s)

This command is used to create a list of data in memory on a printer attached to the Atari
parallel port (P:). Internal line numbers are also directed to the printer although they do
not actually exist within the file on disk or tape.
Prompts used: 'Line from', 'Line to'

Q - Quit

This command is used to exit from the Editor when you are finished editing your data.
Control is given to the Main Menu program. If you have changed the data in memory and
have not saved it prior to quitting, you will be given the option of saving the data or
ignoring the changes and exiting. If you are going to compile a Pascal program
immediately after quitting the Editor, you may use the 'X' command described below.
Prompts used: None

S - Scan line(s)

This command allows you to display all lines within a specified range which contain a
specified character string. The character string may contain any characters, including
imbedded blanks. To temporarily stop the listing, press either the space bar or RETURN.
To abort the listing, press ESC. Press any other key to continue as normal.
Prompts used: 'Line from', 'Line to', 'Scan for'

Draper Pascal 2.1 The Compiler

 Page 25

X - Exit to Compiler

This command terminates the Editor and transfers control directly to the Compiler. If the
file in memory has been changed but not saved prior to the Exit command, you will be
prompted to either save the file or ignore the changes and proceed to the Compiler.
Prompts used: None

 The Compiler

The Compiler is used to translate words that we humans understand into "words" that the
computer can understand. The computer words are referred to as pseudo-code, or
p-code for short. These pseudo-code instructions are understood and executed by the
Supervisor.

This is a single pass goal oriented compiler. It expects the proper syntax for a statement.
If correct syntax is not found, the compilation stops, and an error number with associated
text description is displayed. At this point, you are given the option of quitting or returning
to the Editor to correct the problem and do the compile again.

The Compiler itself is written in Draper Pascal and occupies about 28K of RAM memory
space.

The first prompt from the Compiler is 'Enter filename:'. The name of the last program
edited, run, or compiled is filled in for your convenience. If this is the one you want, just
press RETURN. If it is not the one you want, just overtype it with the name you desire.
The name you provide will become the new default name for the Editor, Compiler, and
Main Menu 'Run' option. No suffix is allowed when specifying filename. The Compiler will
add the standard '.PAS' to it for you. If the source does not reside on the default disk
drive, then you must prefix the filename with 'Dn:' where 'n' is the disk drive number where
the source resides. The default disk drive is normally disk drive number one, but is
changed to the Ramdisk drive number if you are taking advantage of the Ramdisk feature
of a Disk Operating System that supports it. Ramdisk initialization is explained in the
manual provided to registered users.

The next prompt is 'Enter List Output Filespec'. The default (if you just press RETURN) is
the screen (E:). The list output may go to any normal output device, such as printer (P:)
or disk (D:LISTNAME.PRN).

A number of additional points are mentioned below:

7. Comments are delimited by '(*' on the left end and '*)' on the right end. Any

characters may appear within comments. Comments may appear anywhere within
the program.

Draper Pascal 2.1 The Compiler

 Page 26

8. 'Include' files are supported. You may have procedures, functions, or any part of
a program included in a compile, even though it is not actually part of the file being
compiled. It is a variation of a comment which allows you to do this. The format is
as follows:

(*$I XXXXXXXX *) or (*$I D1:XXXXXXXX *)

The dollar sign and 'I' must be right next to '(*' and must be followed by one space. Then
you may mention the 'D' for disk and drive number (if other than the default drive is to be
used). Follow it with a colon (:) and the filename. A suffix of '.PAS' will be automatically
added to the file name. Then have at least one space and '*)'.

9. Pascal source files must reside on disk.

10. The output pseudo-code from the compile will be directed to the same disk drive

that the Pascal source resides on. It will be created with a filename suffix of '.PCD'.
If you have multiple disk drives and the source and pcode will not both fit on one
disk, have a small file on the output disk with an 'include' for the source which
resides on the other disk.

11. The hexadecimal offset of the pseudo instructions generated is given at the left

side of the output listing. This offset may be useful for debugging purposes. It may
be referred to when looking at a program trace (see TRACEON in the Pascal
Definitions section of the manual provided to registered users). It also may be
referred to in case of an error message or termination caused by pressing the
BREAK key. The offset shown may not always be accurate. If not exact, the values
are very close.

12. The name and stack offset of each variable defined is shown at the end of the

compile listing. The offset value is shown in hexadecimal. Each stack entry is two
bytes wide. The first three stack entries are reserved for system use. Therefore,
the offset of the first variable will be 0003, which is actually six bytes into the stack.
If a variable is defined within a procedure or function, the offset shown is relative
the beginning of that procedure or function.

13. The program is ready to run immediately after the compile is finished. No linking is

required. (Some Pascal systems require linking of output code after the compile
and before execution).

14. Nested procedures are supported. You may define one procedure within another.

15. Recursive procedures are supported. A procedure may call itself. If variables are

defined within the procedure, they are cleared with each entry into the procedure

Draper Pascal 2.1 The Compiler

 Page 27

and refreshed upon exit from the recursive procedure call.

16. No forward references are allowed. A procedure may not be referenced before it is

defined. In most cases, nesting the procedures will take care of this problem.

17. Double density disk drives are supported for both source and pcode files. The

pcode will be written to the same drive that the initial source is taken from.

18. Only integer type parameters may be passed to procedures and functions. Other

types of data may be passed by using global type variables setup at the beginning
of the program (not within a procedure or function).

19. A function may only return an integer type value. Procedures do not return values.

20. Hexadecimal constants and literals are prefixed by dollar signs ($).

21. To write out an integer in hexadecimal format, precede the variable name with a

percent sign (%).

22. A total of 170 compiler table entries may be used. One table entry is used for each

variable definition, procedure name, function name, and parameter name used
with procedures and functions. Table entries for variables defined within
procedures are re-used following the 'END' for that procedure. The number of
table entries used within a compile is displayed at the end of the output list from
the Compiler.

23. The time needed to compile a program can be reduced by turning off the ANTIC

chip within the computer. This turns off the display to the screen yet gives a fairly
significant increase to the Atari's internal speed. In a normal Pascal program, you
can have POKE(559,0) to turn it off and POKE(559,34) to turn it back on. But a
special compile time option is provided to make use of this feature to speed up
compiles. It is as follows. Have a statement (*$S+*) to turn the ANTIC off (increase
speed), and use (*$S-*) to turn the ANTIC on (resume normal speed). These
options may appear anywhere within a program. The ANTIC is automatically
turned back on at compile termination and at time of error (if any).

Draper Pascal 2.1 The Supervisor

 Page 28

 The Supervisor

The Supervisor is a high performance machine language program which simulates a
pseudo 16-bit stack oriented computer. It executes the pseudo code that is generated by
the Compiler.

It is loaded into memory by disk operating system at the hex location $1D7C, which is just
above DOS in memory. It should work with any DOS that allows a program to load at that
address, such as Atari DOS 2.1S, Atari DOS 2.5, or SpartaDOS version 2.x or higher. A
message will be displayed if the Supervisor cannot be loaded at the proper location.

The disk filename for the Supervisor's object code is 'AUTORUN.SYS'. It may be
renamed to anything you desire, such as 'PASCAL.COM', but will not be automatically
loaded when the disk is booted if the name is other than 'AUTORUN.SYS'. To start the
Pascal system from the DOS menu, use the 'L', binary load, option to load
'AUTORUN.SYS' into memory. Execution will begin automatically.

The Supervisor begins execution by loading and executing the Pascal program
'INIT.PCD' from the default drive, which is always disk drive 1 immediately after loading
the Supervisor. 'INIT.PCD' is the name of the main menu program. You may substitute
any compiled Pascal program of your own by naming it 'INIT.PCD'. In this manner, you
can have a true turnkey system where your program begins execution after booting the
disk.

After termination of each Pascal program, the Supervisor gives you a choice of what to
do next. You are prompted with the following line:

<START>Repeat,<SELECT>Menu,<ESC>Exit

If you press the START key, your Pascal program will execute again from the beginning.
If you press the SELECT key, control will be transfered to the main menu program
(INIT.PCD). If you press the ESC key, you will exit to the DOS utility menu. You also have
two other options at this point. They are both used for debugging purposes. If you press
CTRL-S (the 'S' key while holding down the CTRL key), the stack values, at termination
time, will be displayed. If you press CTRL-T, the internal trace table, if active, will be
displayed. With either of these two debugging options, you will be asked where the
display should be sent by the prompt 'WHERE? (FILESPEC)'. To see it on the screen,
enter 'E:'. It also may be sent to printer or disk by following normal filespec naming
conventions. If the display is sent to the screen, you may stop the scrolling by use of the
space bar. Press the ESC key if you have seen enough and wish to return to the
Supervisor termination prompt. Any other key causes scrolling to continue as normal.

Draper Pascal 2.1 Pascal Definitions

 Page 29

 Pascal Definitions

ABS FUNCTION ABS(Number):INTEGER;

This function returns the absolute value of 'Number'. In effect, all it does is return
the value of 'Number' with a positive sign. 'Number' may be any integer
expression.

Example:
 PROGRAM ABS_DEMO;

 VAR AJ,J:INTEGER;

 BEGIN

 J:=-7;

 AJ := ABS(J);

 WRITELN('ABS OF -7 IS ',AJ)

 END.

BASIC Equivalent: AJ = ABS(J)

ADDR FUNCTION ADDR(Var):INTEGER;

This function returns the integer absolute address of the specified variable. The
variable may be of any type. If it is an element of an array, the address returned is
that of the particular element specified. For a description of the data formats, see
the item titled 'Internal Data Formats' in the 'System Information' section of this
manual.

Example:
 PROGRAM ADDR_DEMO;

 VAR A,B:INTEGER;

 BEGIN

 A := ADDR(B);

 WRITELN('ADDRESS OF B IS ',A)

 END.

BASIC Equivalent: A = ADR(J$) (Applies only to string variable in Atari BASIC)

AND

Draper Pascal 2.1 Pascal Definitions

 Page 30

This operator sets the resulting condition as true if both the left and right factors
around it are true, otherwise, the condition is set to false. Parentheses should
surround the factors on each side.

Example:
 PROGRAM AND_DEMO;

 VAR A:INTEGER;

 BEGIN

 IF (A>0) AND (A<7) THEN

 WRITELN('VALUE WITHIN RANGE')

 END.

BASIC Equivalent: Same as Pascal

ARCTAN FUNCTION ARCTAN(Var):REAL;

ARCTAN is a REAL built-in function that returns the value of an angle whose
tangent is equal to the value of the variable specified. 'Var' may be either a REAL
variable or an INTEGER variable, but the value returned is always REAL.

Example:
 PROGRAM ARCTAN_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 WRITELN('Enter a number');

 READ(R1);

 R2:=ARCTAN(R1);

 WRITELN('The ARCTAN of ',R1,' is ',R2)

 END.

BASIC equivalent: R2=ATN(R1)

Draper Pascal 2.1 Pascal Definitions

 Page 31

ARRAY ARRAY[Number1] OF Type

ARRAY[Number1,Number2] OF Type

ARRAY specifies that multiple occurances of a variable are to be defined. Either
one or two dimension arrays may be defined. For single dimension arrays,
'Number2' and the comma that precedes it must be omitted. 'Number1' and
'Number2' may be either integer numbers or previously defined integer constants.
They specify the number of elements to be dimensioned. For two dimension
arrays, 'Number1' represents the number of rows, while 'Number2' represents the
number of columns within each row. Space is reserved for 'Number'+1 entries
because occurance numbers of zero through 'Number' are allocated. This means
that ARRAY[2] defines space for three entries, numbered 0, 1, and 2. ARRAY[2,3]
defines space for twelve entries; rows 0 through 3 with four columns (0 through 3)
in each row. While using an array, note that the index for the element in the array,
which is specified within parentheses '()', must either be an integer number or an
integer type variable.

Examples:
 PROGRAM ARRAY_DEMO;

 CONST SIZE=4;

 VAR I,ROW,COL:INTEGER;

 A1: ARRAY[3] OF INTEGER;

 A2: ARRAY[SIZE] OF STRING;

 A3: ARRAY[2,3] OF INTEGER;

 BEGIN

 FOR I:=0 TO 3 DO

 A1(I):=I;

 FOR I:=0 TO SIZE DO

 A2(I):='';

 FOR ROW:=0 TO 2 DO

 FOR COL:=0 TO 3 DO

 A3(ROW,COL):=ROW+COL;

 END.

BASIC Equivalent: DIM A(3)

 No equivalent for BASIC string variables.

ASC FUNCTION ASC(Cvar):INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 32

This function returns the ASCII value (integer) of the specified character variable.

Example:
 PROGRAM ASC_DEMO;

 VAR I:INTEGER;

 CH:CHAR;

 BEGIN

 CH:='A';

 I := ASC(CH);

 WRITELN('THE ASCII VALUE OF ',CH,' IS ',I)

 END.

BASIC Equivalent: I = ASC(CH)

BEGIN

BEGIN marks the start of a block or compound statement within a Pascal program.
END marks the termination of the block or compound statement. Each statement
between the BEGIN and the END, except for the last one, should be followed by
a semicolon (;).

Example:
 PROGRAM BEGIN_DEMO;

 BEGIN

 WRITELN('My name is Fred');

 WRITELN;

 WRITELN

 END.

BASIC Equivalent: None

BLOAD PROCEDURE BLOAD(Program);

This exclusive built-in procedure loads the specified program (or data) from disk
into memory. The program to be loaded should be in the standard DOS load
format as generated by an appropriate assembler or the binary save function of
DOS. 'Program' should be specified in the normal filespec format, including
extension, if any. The object loaded will not automatically begin execution after
completion of the load, as some programs do. The machine language program will
be executed by use of the CALL built-in procedure. Refer to the CALL description

Draper Pascal 2.1 Pascal Definitions

 Page 33

for further information. The IORESULT value should be checked after the BLOAD
to verify that the program did, in fact, exist on the disk.

Explanation for example:
The Pascal program below sends the ASCII value of each of the upper case letters
to the 6502 assembler subroutine. The subroutine changes the character to
inverse and then changes it into a lower case character before returning control to
the Pascal program. The Pascal program then retrieves the character from the
subroutine, prints it on the screen, and repeats until the alphabet is complete.

Example:
 PROGRAM BLOAD_DEMO_1;

 VAR I:INTEGER;

 CH:CHAR;

 BEGIN

 OPTIONS(0);

 BLOAD('D:TEST.OBJ');

 OPTIONS(1);

 IF IORESULT <> 0 THEN

 WRITELN('TEST.OBJ NOT ON DISK');

 FOR I:=ASC('A') TO ASC('Z') DO

 BEGIN

 POKE($600,I);

 CALL($601);

 CH:=PEEK($600);

 WRITE(CH)

 END;

 WRITELN

 END.

*** 6502 Assembler subroutine used in above demo

10 *=$600

20 ADDR1 .BYTE 0

30 LDA ADDR1 Get character from Pascal

40 ORA #$80 Make character inverse

50 CLC Prepare for add instruction

60 ADC #32 Make character lower case

70 STA ADDR1 Put back character for Pascal

80 RTS Return to Pascal program

90 .END

The capability is also provided for the accumulator, the X register, and the Y

Draper Pascal 2.1 Pascal Definitions

 Page 34

register to be initialized for the machine language programs use. The value for the
accumulator should be stored into memory location 166 ($A6). The initial values
for the X and Y registers go into locations 167 and 168 ($A7 and $A8) respectively.
When control is returned to the Pascal program, the ending values of the
accumulator, X register, and Y register may be found in these same locations.
Using this technique, the same demo program could be made up as follows:

Example:
 PROGRAM BLOAD_DEMO_2;

 VAR I:INTEGER;

 CH:CHAR;

 BEGIN

 OPTIONS(0);

 BLOAD('D:TEST.OBJ');

 OPTIONS(1);

 IF IORESULT <> 0 THEN

 WRITELN('TEST.OBJ NOT ON DISK');

 FOR I:=ASC('A') TO ASC('Z') DO

 BEGIN

 POKE($A6,I);

 CALL($600);

 CH:=PEEK($A6);

 WRITE(CH)

 END;

 WRITELN

 END.

*** 6502 Assembler subroutine used in above demo

10 *=$600

20 ORA #$80 Make character inverse

30 CLC Prepare for add instruction

40 ADC #32 Make character lower case

50 RTS Return to Pascal program

60 .END

BASIC Equivalent: None, however some BASIC programs POKE machine
language programs into memory after READing the ASCII values for each byte of
the program as contained in DATA statements.

BOOLEAN
BOOLEAN is a type code which can represent one of two states, TRUE of FALSE.
The actual value is either zero for FALSE or one for TRUE. A BOOLEAN variable
can be used to save the result of a condition.

Draper Pascal 2.1 Pascal Definitions

 Page 35

Example:
 PROGRAM BOOLEAN_DEMO;

 VAR ANSWER:BOOLEAN;

 BEGIN

 ANSWER:=TRUE;

 ANSWER:=FALSE;

 ANSWER:= X < 0;

 ANSWER:= (X < 0) OR (X > 99)

 END.

BASIC Equivalent: None

CALL PROCEDURE CALL(Address);

The CALL procedure transfers execution to a machine language program at the
specified address. 'Address' is any integer expression, which includes hex
constants. It is equivalent to the assembler operation JSR (jump to subroutine).
The subroutine should return control to the Pascal program by using the RTS
(return from subroutine) operation. No parameters are passed to the subroutine
directly, so the 6502 stack will not be loaded with a number of parameters, as is
done by Atari BASIC. This simply means that the machine language subroutine
should not have a PLA (pull accumulator) instruction at its start as is customary
with machine language subroutines called from an Atari BASIC USR instruction. If
the subroutine does begin with PLA and no parameters are being passed, you can
just have the call refer to the address of the byte after the PLA instruction.
However, the accumulator, the X register, and the Y register may be initialized
before a call to the subroutine and inspected after returning from the subroutine.
Refer to the explanation under BLOAD for more details.

Example: Refer to BLOAD example

BASIC Equivalent: None, but quite similar to the USR instruction, as mentioned
above.

CASE CASE expr1 OF const1 : stmt1;

const2 : stmt2;

...

constn : stmtn

END;

Draper Pascal 2.1 Pascal Definitions

 Page 36

CASE expr1 OF const1 : stmt1;

const2 : stmt2;

...

constn : stmtn

ELSE stmtx

END;

The CASE statement compares the result of an expression with several constants
to determine the appropriate statement to be executed.

Example:
 PROGRAM CASE_DEMO;

 VAR DAY:INTEGER;

 BEGIN

 WRITE('Enter day number ');

 READ(DAY);

 CASE DAY OF

 1 : WRITELN('Monday');

 2 : WRITELN('Tuesday');

 3 : WRITELN('Wednesday');

 4 : WRITELN('Thursday');

 5 : WRITELN('Friday');

 6 : WRITELN('Saturday');

 7 : WRITELN('Sunday')

 ELSE

 WRITELN('Invalid day number')

 END

 END.

BASIC Equivalent: None

CHAR

This is a type code assigned to variables to be used in character format. For the
reading of character type variables, one character of data is transfered from the
input device to the variable. No carriage return (RETURN) is required to terminate
the input.

Example:
 PROGRAM CHAR_DEMO;

 VAR CH:CHAR;

Draper Pascal 2.1 Pascal Definitions

 Page 37

 BEGIN

 READ(CH);

 CASE CH OF

 'A' : WRITELN('First letter');

 'B' : WRITELN('Last letter')

 END

 END.

BASIC Equivalent: None.

CHR FUNCTION CHR(expr1):CHAR;

This function changes an integer value into a character format. 'expr1' may be any
integer expression. If the value of 'expr1' is greater than 255, then the ASCII value
of the character value returned will be 'expr1' modulo 256. CHR must be used if it
is desired to write a character which is not a normal letter or number, such as
sending control codes to a printer or clearing the screen. The CHR(125) in the
following example is the proper code for clearing the screen.

Example:
 PROGRAM CHR_DEMO;

 VAR CH:CHAR;

 I:INTEGER;

 BEGIN

 WRITE('Enter a number between 0 and 255 ');

 READ(I);

 CH:=CHR(I);

 WRITELN(CHR(125),'Character equivalent is ',CH)

 END.

BASIC Equivalent: CH=CHR$(I)

CLOSE PROCEDURE CLOSE(File);

This built-in procedure closes a previously opened file. 'File' may either be a
variable of type FILE, or an absolute IOCB number, such as #1. It does not hurt to
close a file which is already closed. Multiple files may be specified if separated by
commas.
Example: Refer to examples for EOF and EOLN

BASIC Equivalent: CLOSE #2

Draper Pascal 2.1 Pascal Definitions

 Page 38

COLOR PROCEDURE COLOR(Number);

This built-in procedure determines the data to be stored in the display memory for
all subsequent PLOT and DRAWTO built-in procedures. It's purpose is identical to
that of the COLOR command in BASIC. Please refer to your Atari BASIC manual
for further information. 'Number' may be any integer expression.

Example: Refer to example for GRAPHICS

BASIC Equivalent: COLOR 2

CONCAT PROCEDURE CONCAT(Parm1,Parm2,...):STRING;

This built-in function returns a string value equal to the concatenation of all
parameters specified in the CONCAT function. These parameters may be of type
string constant, string variable, or character variable.

Example:
 PROGRAM CONCAT_DEMO;

 VAR PGMNAME:STRING;

 BEGIN

 WRITE('Enter file name ');

 READLN(PGMNAME);

 PGMNAME := CONCAT(PGMNAME,'.TXT');

 END.

BASIC Equivalent: PGMNAME$(LEN(PGMNAME$+1))='.TXT'

CONST CONST name1=value1; name2=value2; ...

CONST is used to declare constants to be used within a program. The value of a
constant cannot be changed. The values may be of type integer or real. String
constants are not permitted. The most efficient method for simulating string
constants is to declare space for them with the VAR declarative, then read in the
values from a disk file. Hexadecimal integers may be defined by preceding the
value with a dollar sign ($).

Example:
 PROGRAM CONST_DEMO;

 CONST NUMTIMES = 4; PI = 3.1416;

 ACCUM = $A6;

 VAR I:INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 39

 RADIUS,ANSWER:REAL;

 BEGIN

 FOR I:=1 TO NUMTIMES DO

 BEGIN

 WRITE('Enter radius ');

 READ(RADIUS);

 ANSWER := PI * (RADIUS * RADIUS);

 WRITELN('Circumference is ',ANSWER)

 END

 END.

BASIC Equivalent: None

COPY FUNCTION COPY(Source,Index,Length) : STRING;

This built-in function returns a string value composed of a portion of the string
named by 'Source'. The portion consists of 'Length' characters starting at offset
'Index' into 'Source'. The first position of a string has the index value of 1. 'Index'
and 'Length' are integer expressions, while 'Source' must be of type string. 'Length'
must not be negative and must have a value in the range 1-255. The same is true
for 'Index'. If the value of 'Index' plus 'Length' is greater than the length of 'Source',
then 'Length' assumes the value of the length of 'Source' minus 'Index'.

Example:
 PROGRAM COPY_DEMO;

 VAR FULL_NAME,LAST_NAME:STRING;

 I:INTEGER;

 BEGIN

 FULL_NAME := 'SMITH, JOHN B';

 I := POS(',',FULL_NAME);

 LAST_NAME := COPY(FULL_NAME,1,I-1);

 WRITELN('The last name of ',FULL_NAME,

 ' is ',LAST_NAME)

 END.

BASIC Equivalent: A$=B$(4,7)

COS FUNCTION COS(Var):REAL;

COS is a built-in function which returns the cosine of the value of the variable 'Var'.
'Var' may be either an INTEGER variable or a REAL variable. The value returned
will always be a REAL value.

Draper Pascal 2.1 Pascal Definitions

 Page 40

Example:
 PROGRAM COS_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 WRITELN('Enter a real number');

 READ(R1);

 R2:=COS(R1);

 WRITELN('The cosine of ',R1,' is ',R2)

 END.

BASIC equivalent: R2=COS(R1)

CVTREAL FUNCTION CVTREAL(Ivar):REAL

This built-in function can be used to copy the value of an INTEGER variable into
a REAL variable. 'Ivar' must be an INTEGER type variable.

Example: PROGRAM CVTREAL_DEMO;
 VAR I1:INTEGER;
 R1:REAL;

 BEGIN
 WRITELN('Enter an integer number');
 READ(I1);
 R1:=CVTREAL(I1);
 WRITELN(R1,' is now a real number')
 END.

BASIC Equivalent: None

DEG PROCEDURE DEG;

DEG is used to specify that the output values from ARCTAN, COS, and SIN are to
be expressed in degrees, as opposed to radians. The system defaults to radians
unless DEG is specified. Once specified, all output is in degrees until RAD is
specified for radians, or the computer is turned off and back on.
Example:
 PROGRAM DEG_RAD_DEMO;

 VAR R1,R2:REAL;

Draper Pascal 2.1 Pascal Definitions

 Page 41

 REPLY:CHAR;

 BEGIN

 WRITELN('Enter a D for output in degrees');

 WRITELN(' or R for output in radians');

 READ(REPLY);

 CASE REPLY OF

 'D': DEG;

 'R': RAD

 ELSE

 WRITELN('That was not one of the choices')

 END;

 WRITELN('Enter a real number');

 READ(R1);

 R2:=SIN(R1);

 WRITELN('The sine of ',R1,' is ',R2)

 END.

BASIC Equivalent: DEG

DELETE PROCEDURE DELETE(Source,Index,Size);

The DELETE built-in procedure removes a specified number of characters from a
string. 'Size' characters are removed from the string, 'Source', starting at offset
'Index'.

Example:
 PROGRAM DELETE_DEMO;

 VAR ALPHABET:STRING;

 BEGIN

 ALPHABET:='ABCDEFG';

 DELETE(ALPHABET,3,2);

 WRITELN(ALPHABET)

 END.

The resulting value of ALPHABET will be 'ABEFG'.
BASIC Equivalent: None

DIV

This operator computes the quotient of the two factors surrounding it. The factors

Draper Pascal 2.1 Pascal Definitions

 Page 42

may be either of type REAL or type INTEGER. DIV is equivalent to '/' in this
implementation of Pascal.

Example:
 PROGRAM DIV_DEMO;

 VAR I1,I2:INTEGER;

 R1,R2,R3:REAL;

 BEGIN

 I1:=20;

 I2:=I1 DIV 2;

 R1:=20.0;

 R2:=5.2;

 R3:=R1 DIV R2

 END.

BASIC Equivalent: R3=R1/R2

DOS PROCEDURE DOS;

This built-in procedure terminates execution of the Pascal supervisor and
transfers control to the Atari Disk Operating System. For more information on the
use of DOS, refer to the DOS Manual.

Example:
 PROGRAM DOS_DEMO

 BEGIN

 DOS

 END.

BASIC Equivalent: DOS

DRAWTO PROCEDURE DRAWTO(X,Y);

The DRAWTO built-in procedure causes a graphic line to be drawn from the last
coordinate refered to in a PLOT or DRAWTO built-in procedure. The color of the
line is determined by the most recent setting of the COLOR procedure. 'X' and 'Y'
may be any valid integer expressions.

Example:
 PROGRAM DRAWTO;

Draper Pascal 2.1 Pascal Definitions

 Page 43

 VAR X,Y:INTEGER;

 BEGIN

 COLOR(1);

 PLOT(10,10);

 X:=20;

 Y:=30;

 DRAWTO(X,Y)

 END;

BASIC Equivalent: DRAWTO X,Y

DUMPSTK PROCEDURE DUMPSTK;

This exclusive built-in procedure dumps the values of the Pascal stack to the
output device of your choice. The output is sent to IOCB #7. If it is already open,
then it will be used as is. If it is not open, the following prompt will be displayed on
the screen: 'WHERE? (FILESPEC)'. Enter with a normal device specification,
such as E:. Each stack entry is two bytes wide. It is displayed in the following
format:

 STACK ADDR=aaaa HEX=hhhh CHAR=cc

'aaaa' is the absolute address of this stack entry, shown in hexadecimal format.
'hhhh' is the value of this stack entry shown in hex. 'cc' is the same stack entry
value shown in character format if the value is determined to be printable. Refer to
the 'System Information' section of this manual for a description of internal variable
formats.

Example:
 PROGRAM DUMPSTK_DEMO;

 BEGIN

 DUMPSTK

 END.

BASIC Equivalent: None

DVSTAT PROCEDURE DVSTAT(A,B,C,D);

This exclusive built-in procedure reads the device status information as requested
from the STATUS command and stores the values into variables 'A', 'B', 'C', and
'D'. These variables may have any names, but must be predefined as integer
variables. The values stored into the named variables are taken from locations

Draper Pascal 2.1 Pascal Definitions

 Page 44

746 through 749, decimal, within the operating system. The most common usage
for DVSTAT would be in checking the status of RS232 ports. Consult your Atari
850 Interface Module Operator's Manual for the meanings associated with these
different status bytes.

Example:
 PROGRAM DVSTAT_DEMO;

 VAR BYTE1,BYTE2,BYTE3,BYTE4:INTEGER;

 BEGIN

 STATUS(#1);

 DVSTAT(BYTE1,BYTE2,BYTE3,BYTE4);

 WRITELN('Status values are ',

 BYTE1,' ',

 BYTE2,' ',

 BYTE3,' ',

 BYTE4)

 END.

BASIC Equivalent: A=PEEK(746)

B=PEEK(747)

C=PEEK(748)

D=PEEK(749)

END

END marks the termination of a block or compound statement within a Pascal
program. BEGIN marks the start of the block or compound statement. Each
statement between the BEGIN and the END, except for the last one, should be
followed by a semicolon (;). END is also required as termination for a CASE
statement.

Example: Refer to example for BEGIN.
BASIC Equivalent: None

EOF EOF(File);
This reserved word checks for end of file of an input device. It returns a true value
if the most recent read of the file has detected an end of file mark. 'File' may be
either a variable of type FILE, or an absolute IOCB number preceded by a '#'.

Example:
 PROGRAM EOF_DEMO;

Draper Pascal 2.1 Pascal Definitions

 Page 45

 VAR INPUT,OUTPUT:FILE;

 DATA:STRING;

 BEGIN

 RESET(INPUT,'D:TEST.TXT');

 REWRITE(OUTPUT,'D:TEST.NEW');

 REPEAT

 READLN(INPUT,DATA);

 WRITELN(OUTPUT,DATA)

 UNTIL EOF(INPUT);

 CLOSE(INPUT,OUTPUT)

 END.

BASIC Equivalent: 100 TRAP 2000

...

2000 IF PEEK(195)=136 THEN ...

EOLN EOLN(File);

This reserved word checks for end of line of an input device. It returns a true value
if the most recent read of the file has detected an end of line condition ($9B
character). 'File' may be either a variable of type FILE, or an absolute IOCB
number preceded by a '#'.

Example:
 PROGRAM EOLN_DEMO;

 VAR DATA:CHAR;

 BEGIN

 OPEN(#1,4,0,'D:TEST.TXT');

 OPEN(#2,8,0,'D:TEST.NEW');

 REPEAT

 READ(#1,DATA);

 WRITE(#2,DATA);

 IF EOLN(#1) THEN WRITELN(#2);

 UNTIL EOF(#1);

 CLOSE(#1,#2)

 END.

BASIC Equivalent: 100 GET #1,A

200 IF A=155 THEN ...

Draper Pascal 2.1 Pascal Definitions

 Page 46

EXIT PROCEDURE EXIT;

This built-in procedure causes immediate termination of the currently executing
Pascal program. Control is transfered to the Pascal Supervisor. No files are
closed.

Example:
 PROGRAM EXIT_DEMO;

 BEGIN

 EXIT

 END.

BASIC Equivalent: END

EXP FUNCTION EXP(Var):REAL;

The function EXP(Var) computes the value of e to the 'Var' power. 'Var' may be
either an INTEGER variable or a REAL variable. The value returned is always a
REAL number. e is the base of the natural logarithm. The exponential function
(EXP) and the natural logarithmic function (LN) are inverse functions.

Example:
 PROGRAM EXP_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 R1:=3.0;

 R2:=EXP(R1)

 END.

BASIC equivalent: R2=EXP(R1)

EXP10 FUNCTION EXP10(Var):REAL;

The function EXP10(Var) computes the value of 10 to the 'Var' power. 'Var' may
be either an INTEGER variable or a REAL variable. The value returned is always
a REAL number. The exponential function (EXP10) and the decimal logarithmic
function (LOG) are inverse functions.

Example:
 PROGRAM EXP10_DEMO;

Draper Pascal 2.1 Pascal Definitions

 Page 47

 VAR R1,R2:REAL;

 BEGIN

 R1:=3.0;

 R2:=EXP10(R1)

 END.

BASIC equivalent: R2=10 ^ R1

FALSE

FALSE is a BOOLEAN constant representing the untrue state. It is internally equal
to an integer value of zero.

Example: Refer to the example under BOOLEAN
BASIC Equivalent: None

FILE

This is a type code used in a VAR declaration. Each file defined is internally
assigned an IOCB number. These numbers start at one, for the first file defined,
and increment up to a maximum value of seven. The FILE type variables may only
be used in input-output type commands such as OPEN, CLOSE, READ, READLN,
WRITE, WRITELN, EOF, EOLN, RESET, and REWRITE.

Example: (Refer to example under EOF)

BASIC Equivalent: None

FOR FOR var := expr1 TO expr2 DO statement;

FOR var := expr1 DOWNTO expr2 DO statement;

The FOR statement is used to repeat execution of a statement for a predefined
number of times. 'var' and 'expr1' and 'expr2' must be of the same type. The types
allowed are INTEGER and REAL. Execution is as follows:
 1. 'var' is set to 'expr1'.
 2. 'var' is compared with 'expr2'. If 'var' is greater than or equal to 'expr2' (for

TO) or 'var' is less than or equal to 'expr2' (for DOWNTO) proceed to step 6.
 3. 'statement' is executed.
 4. 'var' is incremented by 1 (for TO) or decremented by 1 (for DOWNTO).

Draper Pascal 2.1 Pascal Definitions

 Page 48

 5. go to step 2.
 6. exit

Example:
 PROGRAM FOR_TEST;

 VAR I:INTEGER;

 BEGIN

 FOR I:=1 TO 5 DO WRITELN('TEST')

 END.

BASIC Equivalent: FOR I=1 TO 5

FUNCTION

A FUNCTION is a group of statements that has a name and executes a certain
task or algorithm. The identifier name for the FUNCTION may be used as a
variable of type INTEGER. Parameters may be passed to the FUNCTION. These
parameters must also be of type INTEGER. In this implementation of Pascal,
FUNCTION may be abbreviated as FUNC.

Example:
 PROGRAM FUNCTION_TEST;

 VAR A,B:INTEGER;

 FUNCTION SQUARE(NUMBER);

 BEGIN

 SQUARE:=NUMBER*NUMBER

 END;

 BEGIN (*MAIN*)

 FOR A:=1 TO 5 DO

 BEGIN

 B:=SQUARE(A);

 WRITELN('THE SQUARE OF ',A,' IS ',B)

 END

 END.

BASIC Equivalent: None

GOTOXY PROCEDURE GOTOXY(X,Y);

Draper Pascal 2.1 Pascal Definitions

 Page 49

This built-in procedure is used to set the position of the cursor. The next WRITE
will have it's output begin at x-coordinate 'X' and y-coordinate 'Y'. The cursor will
not actually be moved until the next WRITE occurs. 'X' and 'Y' can be any integer
expressions.

Example:
 PROGRAM GOTOXY_TEST;

 BEGIN

 GOTOXY(12,12);

 WRITELN('MIDDLE OF SCREEN')

 END.

BASIC Equivalent: POSITION 12,12

GRAPHICS PROCEDURE GRAPHICS(Number);

The GRAPHICS command is used to select one of the many graphics modes
available on the Atari computer. For a complete description of the command and
the modes available, please refer to your Atari BASIC manual. 'Number' may be
any integer expression. Note that before using the GRAPHICS command, you
should execute the MAXGRAPH command to reserve screen memory for the
mode desired. If you don't, the Pascal stack may overlay part of the screen
memory and the results would be unpredictable.

Example:
 PROGRAM KALEIDOSCOPE;

 VAR I,J,K,W:INTEGER;

 BEGIN

 MAXGRAPH(19);

 GRAPHICS(19);

 X:=0;

 REPEAT

 FOR W:=3 TO 50 DO

 BEGIN

 FOR I:=1 TO 10 DO

 BEGIN

 FOR J:=0 TO 10 DO

 BEGIN

 K:=I+J;

 COLOR(J*3/(I+3)+I*W/12);

 PLOT(I+8,K);

Draper Pascal 2.1 Pascal Definitions

 Page 50

 PLOT(K+8,I);

 PLOT(32-I,24-K);

 PLOT(32-K,24-I);

 PLOT(K+8,24-I);

 PLOT(32-I,K);

 PLOT(I+8,24-K);

 PLOT(32-K,I)

 END

 END

 END

 UNTIL KEYPRESS

 END.

BASIC Equivalent: GRAPHICS 8

HIMEM PROCEDURE HIMEM(Value);

This built-in procedure is used to set the upper boundary of memory to be used by
the Pascal supervisor during execution. 'Value' may be any integer expression.
HIMEM may be used to protect a machine language subroutine in upper memory,
or to protect an area of memory where you may store data.

Example:
 PROGRAM HIMEM_DEMO;

 BEGIN

 HIMEM($5FFF);

 BLOAD('D:TEST.OBJ');

 CALL($6000)

 END.

BASIC Equivalent: POKES into locations 144 and 145 (decimal)

IF IF expr1 THEN stmt1;

IF expr1 THEN stmt1 ELSE stmt2;

The IF statement evaluates expressions to see if they are true or false. 'expr1' is
any kind of expression. If the expression is true, then 'stmt1' will be executed. If the
expression is false, then 'stmt1' is not executed. If ELSE is used then 'stmt2' is
executed when the expression is false.

Example:
 PROGRAM IF_DEMO;

 VAR I:INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 51

 BEGIN

 I:=5;

 IF I=5 THEN WRITELN('FIVE')

 ELSE WRITELN('NOT FIVE')

 END.

BASIC Equivalent: IF I=5 THEN ... (No ELSE)

INSERT PROCEDURE INSERT(Source,Destination,Index);

This built-in procedure inserts a string, or string literal, into another string at a
specified position. 'Source' may be either a string variable, a string literal (within
quotes), or a character type variable. 'Destination' must be a variable of type string.
'Index' may be any integer expression having a value in the range 1-255.

Example:
 PROGRAM INSERT_DEMO;

 VAR PGMNAME:STRING[20];

 BEGIN

 WRITE('Enter filename ');

 READLN(PGMNAME);

 IF POS(':',PGMNAME) = 0 THEN

 INSERT('D1:',PGMNAME,1);

 WRITELN('New filename is ',PGMNAME)

 END.

BASIC Equivalent: None

INTEGER

INTEGER is a type code assigned to integer variables. Integer variables contain
values which are whole numbers in the range -32768 to +32767.

Example: Refer to ASC example

BASIC Equivalent: None

IORESULT FUNCTION IORESULT:INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 52

The IORESULT built-in function returns the value of the return code from the most
recent input-output operation. It is normally used after disk operations to verify that
the requested action successfully completed. If the value of IORESULT is zero,
then the operation was successful. If it is other than zero, some kind of error has
occurred. End-of-file and end-of-line are not considered errors and are handled by
the EOF and EOLN built-in functions. An integer variable may be assigned the
value of IORESULT if the value is to be saved. Remember that WRITE and
WRITELN cause input-output operations to occur and set the value of IORESULT.
Refer to the BASIC or ASSEMBLER manuals for a list of the error codes and their
meanings. The error numbers above 127 are the ones you should be concerned
with. The value of 137 (truncated record) may pertain to some of the built-in string
functions and not actually be caused by an input-output request.

Example: Refer to BLOAD example

BASIC Equivalent: The TRAP instruction is used to provide a line number to
branch to on error conditions.

KEYPRESS FUNCTION KEYPRESS:INTEGER;

This built-in function returns a one (true value) if any key on the keyboard has been
pressed. Otherwise the value returned is a zero (false value). It allows a program
to continue executing until interrupted by someone pressing a key on the
keyboard.

Example: Refer to example under GRAPHICS

BASIC Equivalent: IF PEEK(764)<>255 THEN ...

LENGTH FUNCTION LENGTH(svar):INTEGER;

The LENGTH built-in function returns the length of a string. 'svar' must be a string
type variable.

Example:
 PROGRAM LENGTH_DEMO;

 VAR I:INTEGER;

 S:STRING;

 BEGIN

 S:='ABCDEFG';

 I:=LENGTH(S);

Draper Pascal 2.1 Pascal Definitions

 Page 53

 WRITELN('The length of ',S,' is ',I)

 END.

BASIC Equivalent: I=LEN(S$)

LN FUNCTION LN(Var):REAL;

The LN function returns the natural logarithm of the value of 'Var'. 'Var' mey either
be an INTEGER variable or a REAL variable, but must be positive and greater
than zero. The value returned will always be REAL.

Example:
 PROGRAM LN_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 R1:=3.0;

 R2:=LN(R1)

 END.

BASIC Equivalent: R2=LOG(R1)

LOCATE FUNCTION LOCATE(X,Y):INTEGER;

The LOCATE function positions the invisible graphics cursor at the specified
location in the graphics window and returns a value equal to the data at that pixel.
Graphics modes 0 through 2 will return a value of 0-255. The 2-color graphics
modes will return a value of 0 or 1. The four color modes will return a value in the
range 0-3. You should reposition the cursor using GOTOXY prior to doing a
WRITE after LOCATE.

Example:
 PROGRAM LOCATE_DEMO;

 VAR I,X,Y:INTEGER;

 BEGIN

 MAXGRAPH(19);

 GRAPHICS(19);

 SETCOLOR(2,8,10);

 PLOT(8,12);

 DRAWTO(12,12);

 I:=LOCATE(10,12);

Draper Pascal 2.1 Pascal Definitions

 Page 54

 GRAPHICS(0);

 WRITELN('The data was ',I)

 END.

BASIC Equivalent: LOCATE 10,12,I

LOCK PROCEDURE LOCK(Filename);

LOCK is used to lock a file on disk. After a file is locked, it is protected from being
accidentally deleted or renamed. 'Filename' may either be a string literal (in
quotes) or a string type variable.

Example:
 PROGRAM LOCK_DEMO;

 VAR FILENAME:STRING;

 BEGIN

 FILENAME:='D:TEST.TXT';

 LOCK(FILENAME);

 LOCK('D:TEST.TXT')

 END.

BASIC Equivalent: XIO 35,#1,0,0,"D:TEST.TXT"

LOG FUNCTION LOG(Var):REAL;

The LOG function returns the decimal logarithm (to the base 10) of the value of
'Var'. 'Var' may be either an INTEGER variable or a REAL variable. The value of
'Var' must be positive. The value returned will always be REAL.

Example:
 PROGRAM LOG_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 R1:=3.0;

 R2:=LOG(R1)

 END.

BASIC Equivalent: R2=LOG(R1)/LOG(10)

Draper Pascal 2.1 Pascal Definitions

 Page 55

LPENH, LPENV FUNCTION LPENH:INTEGER;

FUNCTION LPENV:INTEGER;

These two functions are used for light pen support. LPENH returns the horizontal
(X-coordinate) of the light pens position, while LPENV returns the vertical
(Y-coordinate) position.

Example:
 PROGRAM LPEN_DEMO;

 VAR A,X,Y:INTEGER;

 BEGIN

 MAXGRAPH(8);

 GRAPHICS(8);

 COLOR(1);

 REPEAT

 IF SELECTKEY THEN GRAPHICS(8);

 WHILE STICK(0)=15 DO

 BEGIN

 X:=LPENH;

 Y:=LPENV;

 PLOT(X,Y);

 IF IORESULT<>0 THEN EXIT

 END

 UNTIL KEYPRESS

 END.

BASIC Equivalent: X=PEEK(564):Y=PEEK(565)

MAXGRAPH PROCEDURE MAXGRAPH(Mode);

The MAXGRAPH procedure is used to inform Pascal of the maximum graphics
mode to be used within the program. Internal pointers are adjusted to allow for the
required amount of screen memory to be reserved. If MAXGRAPH is not used, you
may get undesirable results if the internal stack overlays part of the screen
memory. 'Mode' may be any valid graphics mode, including those with 16 or 32
added to them. If the internal trace (see TRACEON) is active, it is forced off by the
MAXGRAPH command.

Example: Refer to example under LPENH

BASIC Equivalent: None

Draper Pascal 2.1 Pascal Definitions

 Page 56

MOD

MOD is an operator used to compute the remainder after the division of two integer
factors. The left factor is divided by the right factor with the value returned being
the remainder of the division.

Example:
 PROGRAM MOD_DEMO;

 VAR I,YEAR:INTEGER;

 BEGIN

 WRITELN('Enter year ');

 READ(YEAR);

 I:=YEAR MOD 4;

 IF I=0 THEN

 WRITELN('Leapyear')

 ELSE

 WRITELN('Not leapyear')

 END.

BASIC Equivalent: None

NOT

This is an operator used to complement the factor which follows it. It is most
commonly used to determine when to stop reading input (WHILE NOT EOF DO
...).

Example: Refer to example under EOF

BASIC Equivalent: NOT

NOTE PROCEDURE NOTE(Iocbno,Sector,Byte);

The NOTE procedure is used to retrieve and save the current access location of
a disk file. 'Iocbno' may be any valid IOCB number which refers to an open disk
file. The IOCB number should be preceded by a #. 'Byte' and 'Sector' refer to
previously defined integer type variables. NOTE and POINT are used together to
provide random access to disk files.

Example:
 PROGRAM NOTE_POINT_DEMO;

Draper Pascal 2.1 Pascal Definitions

 Page 57

 VAR SECTOR,BYTE,I,REPLY:INTEGER;

 S_TABLE,B_TABLE:ARRAY[5] OF INTEGER;

 DATA:STRING;

 BEGIN

 (* CREATE THE FILE *)

 OPEN(#1,8,0,'D:TEST.TXT');

 FOR I:=1 TO 5 DO

 BEGIN

 WRITELN('Enter record number ',I);

 READLN(DATA);

 NOTE(#1,SECTOR,BYTE);

 S_TABLE(I):=SECTOR;

 B_TABLE(I):=BYTE;

 WRITELN(#1,DATA)

 END;

 CLOSE(#1);

 (* RANDOMLY ACCESS THE FILE *)

 OPEN(#1,4,0,'D:TEST.TXT');

 FOR I:=1 TO 5 DO

 BEGIN

 REPEAT

 WRITE('Enter a record number ');

 READ(REPLY)

 UNTIL (REPLY>0) AND (REPLY<6);

 SECTOR:=S_TABLE(REPLY);

 BYTE:=B_TABLE(REPLY);

 POINT(#1,SECTOR,BYTE);

 READLN(#1,DATA);

 WRITELN('Record ',REPLY,' is ');

 WRITELN(DATA)

 END;

 CLOSE(#1)

 END.

BASIC Equivalent: NOTE

ODD FUNCTION ODD(iexp);

The ODD function returns a true value if the value of the specified integer

Draper Pascal 2.1 Pascal Definitions

 Page 58

expression is odd. 'iexp' may be any integer type expression.

Example:
 PROGRAM ODD_DEMO;

 VAR I:INTEGER;

 BEGIN

 WRITE('Enter an integer number ');

 READ(I);

 IF ODD(I) THEN

 WRITELN('Odd')

 ELSE

 WRITELN('Even')

 END.

BASIC Equivalent: None

OPEN PROCEDURE OPEN(Fileno,Aux1,Aux2,Filename);

The OPEN is used to connect a program to a device. Each device or file must be
opened before it may be accessed. The RESET and REWRITE commands may
also be used to open files. 'Fileno' may either be a variable of type FILE, or an
absolute IOCB number preceded by a #. 'Filename' may be either a variable of
type string, or a string literal (within quotes). 'Aux1' specifies the type of open to be
performed. Valid values for 'Aux1' are as follows:
 4: Input operation
 6: Disk directory input operation
 8: Output operation
 9: End of file append operation
12: Input and output operation
'Aux2' is a device dependant value but is normally zero. Refer to the appropriate
manuals for information on specific control codes.

Example: Refer to the example for NOTE

BASIC Equivalent: OPEN #1,4,0,"D:TEST.TXT"

OPTIONKEY

This special built-in function returns a true value if the OPTION key on the Atari
keyboard is being pressed at the time the instruction is executed.

Draper Pascal 2.1 Pascal Definitions

 Page 59

Example:
 PROGRAM OPTIONKEY_DEMO;

 VAR I:INTEGER;

 BEGIN

 WRITELN('Press BREAK key to stop');

 REPEAT

 IF OPTIONKEY THEN WRITELN('Option key');

 IF SELECTKEY THEN WRITELN('Select key');

 IF STARTKEY THEN WRITELN('Start key')

 UNTIL I=99 (* UNENDING LOOP *)

 END.

BASIC Equivalent: IF PEEK(53279)=4 THEN ... :REM OPTION KEY
 IF PEEK(53279)=2 THEN ... :REM SELECT KEY

 IF PEEK(53279)=1 THEN ... :REM START KEY

OPTIONS OPTIONS(Opt1,Opt2,...,Optn);

This special built-in procedure allows you to control certain events at program
execution time. The options specified are always integer numbers. They are
defined in pairs so that one number can set an option while the other number of
the pair can reset the same option. An option remains in effect until reset by the
other option in the pair, or the Pascal Supervisor is reloaded. The 'S' on the end
of the word OPTIONS is required, even if only one option number is specified. If
an invalid option number is given, it will be ignored and execution will continue as
normal. The available options are shown below with defaults shown:

0 - TURN OFF ERROR DISPLAY

The display of CIO error messages is suppressed with this option. Error
conditions can be checked for by looking at the value of IORESULT after
each input-output operation.

1 - TURN ON ERROR DISPLAY (Default)

This option allows CIO error messages to be displayed when they occur.

2 - TURN OFF PROMPT DISPLAY

This option suppresses the printing of the 'Execution Completed' message

Draper Pascal 2.1 Pascal Definitions

 Page 60

and the 'Highest Stack Address Used' message.

3 - TURN ON PROMPT DISPLAY (Default)

This option allows the above mentioned messages to be once again
displayed at program termination.

4 - DISABLE BREAK KEY

This option prevents the BREAK key on the Atari keyboard from interrupting
execution of a program. In order to keep the BREAK key disabled, it may be
necessary to have OPTIONS(4) specified after the first WRITE or WRITELN
that goes to the screen or any OPEN, RESET, or REWRITE that addresses
the screen (E: or S:). It should also be reissued after the GRAPHICS
command.

5 - ENABLE BREAK KEY (Default)

The BREAK key may once again be used to stop execution of a program
after this option is put into effect.

6 - ONLY POSITIVE INTEGERS (0 TO 65535)

This option sets the range of integer values to be from zero through 65535.
Reads, writes, and compares are affected by the setting of this option.

7 - POSITIVE AND NEGATIVE INTEGERS (-32768 TO +32767)

This option sets the range of integer values to be from -32768 through
+32767. Reads, writes, and compares are affected by the setting of this
option.

Example:
 PROGRAM OPTION_DEMO;

 VAR REPLY:CHAR;

 BEGIN

 WRITELN('Enter D to disable break key');

 WRITELN('Enter E to enable break key');

 READ(REPLY);

 CASE REPLY OF

 'D' : OPTIONS(4);

 'E' : OPTIONS(5)

Draper Pascal 2.1 Pascal Definitions

 Page 61

 END.

BASIC Equivalent: None

OR

This operator sets the resulting condition as true if either the left or the right factors
around it are true, otherwise, the condition is set to false. Parentheses should
surround the factors on each side.

Example:
 PROGRAM OR_DEMO;

 VAR A:INTEGER;

 BEGIN

 WRITE('Enter a number between 1 and 6');

 READ(A);

 IF (A<1) OR (A>6) THEN

 WRITELN('Value outside of range')

 ELSE

 WRITELN('Value okay')

 END.

BASIC Equivalent: Same as Pascal

ORD FUNCTION ORD(Realvar):INTEGER;

The ORD function is used to convert a real number into an integer number.
'Realvar' must be a variable of type REAL. Rounding, rather than truncation, is
performed on the value. Refer to the example for a method of obtaining a
truncated value.

Example:
 PROGRAM ORD_DEMO;

 VAR I:INTEGER;

 R:REAL;

 BEGIN

 WRITE('Enter a real number ');

 READ(R);

 I:=ORD(R);

 WRITELN('The rounded integer value is ',I);

Draper Pascal 2.1 Pascal Definitions

 Page 62

 IF CVTREAL(ORD(R)) > R THEN

 R:=R-1;

 WRITELN('The truncated value is ',ORD(R))

 END.

BASIC Equivalent: I=INT(R)

PADDLE FUNCTION PADDLE(Number):INTEGER;

This function returns the status value of a particular paddle controller. The
controllers are numbered 0-7 from left to right. The value returned will be an
integer number between 1 and 228. The value increases as the knob on the
controller is rotated counterclockwise. 'Number' may be any integer expression
having a value in the range 0-7.

Example:
 PROGRAM PADDLE_DEMO;

 VAR I,J:INTEGER;

 BEGIN

 REPEAT

 I:=PADDLE(0);

 WRITELN('Value of paddle(0) is ',I)

 UNTIL J=99 (* UNENDING LOOP *)

 END.

BASIC Equivalent: I=PADDLE(0)

PEEK FUNCTION PEEK(Address):INTEGER;

This function returns the contents of a specific memory address location. The
value returned will be an integer in the range 0-255. 'Address' may be any integer
expression, including hexadecimal constants (preceded by a $).

Example:
 PROGRAM PEEK_DEMO;

 VAR I,REPLY:INTEGER;

 BEGIN

 WRITE('Enter a memory address in decimal');

 READ(REPLY);

 I:=PEEK(REPLY);

 WRITELN('That location contains hex ',%I)

Draper Pascal 2.1 Pascal Definitions

 Page 63

 END.

BASIC Equivalent: I=PEEK(REPLY)

PLOT PROCEDURE PLOT(X,Y);

PLOT is used to display a point within one of the graphics windows. The color of
the point plotted is determined by the hue and luminance in the color register from
the last COLOR statement executed. The color of the plotted point is changed by
use of the SETCOLOR command. 'X' and 'Y' may be any integer expressions.

Example: Refer to example under GRAPHICS

BASIC Equivalent: PLOT(X,Y)

POINT PROCEDURE POINT(Iocbno,Sector,Byte);

The POINT procedure is used to position the disk file pointer to the next location to
be read or written. It is used in conjunction with NOTE to provide random access
capabilities. 'Iocbno' may be any valid IOCB number which refers to an open disk
file. It must be preceded by a '#'. 'Sector' and 'Byte' refer to previously defined
integer type variables. They normally contain a value which was set by a NOTE
command.

Example: Refer to example under NOTE

BASIC Equivalent: POINT #1,SECTOR,BYTE

POKE PROCEDURE POKE(Address,Value);

The POKE procedure is used to store a certain value into a specific memory
location. 'Address' may be any integer expression, including hexadecimal
constants (preceded by a $). 'Value' may be any integer expression. 'Value' should
be in the range 0-255. If it is greater than 255, then the value stored will be 'Value'
MOD 256.

Example:
 PROGRAM POKE_DEMO;

 CONST LEFT_MARGIN = 82;

 VAR I:INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 64

 BEGIN

 WRITE('Enter new left margin value ');

 READ(I);

 POKE(LEFT_MARGIN,I)

 END.

BASIC Equivalent: POKE 82,I

POS FUNCTION POS(Pattern,Source):INTEGER;

This function returns the position of the first occurence of a given string in another
string. 'Pattern' may be either string variables, character variables, or string literals
(within quotes), or any mixture thereof. 'Source' must be a string variable. A value
of zero is returned if the pattern is not found. You can easily check for the
presence or absence of a pattern by checking to see if the value returned is zero
or not.

Example: Refer to example under INSERT

BASIC Equivalent: None

PROCEDURE PROCEDURE Name;

PROCEDURE Name(Parm1,Parm2,...,Parmn);

A procedure is a named group of statements that executes a specific task or
algorithm. No value is associated with it, as with a function. Parameters may be
passed to the procedure. All parameters must be of type integer. A procedure is
activated just by specifying it's name. It must be defined before it's name is
mentioned. Variables may be defined within procedures. If they are, they are local
to that procedure and may be referenced only from within that procedure. The
variable names may be the same as variables defined elsewhere within the
program without interfering with their values. In this implementation of Pascal, you
may use PROC as an abbreviation for PROCEDURE.

Example:
 PROGRAM PROCEDURE_DEMO;

 VAR NUMLINES:INTEGER;

 (* WRITE VARIABLE NUMBER OF BLANK LINES *)

 PROCEDURE LINES(NUMBER);

 VAR I:INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 65

 BEGIN

 FOR I:=1 TO NUMBER DO WRITELN

 END;

 (* DISPLAY MENU LIST *)

 PROCEDURE MENU;

 BEGIN

 (* THE 125 BELOW IS A CLEAR SCREEN CODE *)

 WRITELN(CHR(125),'TITLE');

 WRITELN('1 - Choice one');

 WRITELN('2 - Choice two')

 END;

 (* MAIN PROGRAM SECTION *)

 BEGIN

 MENU;

 WRITE('Enter number of lines to blank ');

 READ(NUMLINES);

 LINES(NUMLINES)

 END.

BASIC Equivalent: The object of a GOSUB

Draper Pascal 2.1 Pascal Definitions

 Page 66

PROGRAM PROGRAM Name;

PROGRAM is used to give a name to the Pascal program which follows it. No code
is generated from it. It's only purpose is to provide documentation. 'Name' may be
any string of characters, of any length, which is terminated by a semicolon (;).

Example:
 PROGRAM ANY_NAME_AT_ALL;

 BEGIN

 WRITELN('This program has a name')

 END.

BASIC Equivalent: None

PTRIG FUNCTION PTRIG(Number):INTEGER;

This function is used to determine the status of the trigger button on the
designated paddle controller. A value of 0 is returned if the trigger is pressed,
otherwise the value returned is a 1.

Example:
 PROGRAM PTRIG_DEMO;

 BEGIN

 REPEAT

 WRITELN('Press paddle 0 trigger to stop')

 UNTIL PTRIG(0)=0

 END.

BASIC Equivalent: IF PTRIG(0)=0 THEN ...

PURGE PROCEDURE PURGE(Filespec);

This procedure is used to remove a file from a diskette. 'Filespec' may be either a
string variable or a string literal (within quotes). 'Filespec' must indicate the device
and filename extension (if present).

Example:
 PROGRAM PURGE_DEMO;

 BEGIN

Draper Pascal 2.1 Pascal Definitions

 Page 67

 PURGE('D:TEST.TXT')

 END.

BASIC Equivalent: XIO 33,#1,0,0,"D:TEST.TXT"

RAD

RAD is used to indicate that the output from all trigonometric computations that
follow is to be expressed in radians, rather than degrees. Radians are the default
unless DEG is specified. You can switch back and forth between degrees and
radians as often as you like.

Example: Refer to example under DEG

BASIC Equivalent: RAD

READ, READLN PROCEDURE READ(File,Var1,Var2,...Varn);

READ and READLN are used to supply data to a program from a keyboard or any
other input type device. In this implementation of Pascal, READ and READLN are
identical and may be used interchangeably. Variables must be predefined to hold
the data to be read. These variables may be of type character, integer, real, or
string, or elements of an array of one of these types. The type code of the variable
determines how it is read into the program. For character type variables, one
character of data is transfered from the input device to the variable. No carriage
return (RETURN) is required for character type variables. The carriage return is
required, however, for all other data types, since each may be entered as a
variable number of characters. 'File' is optional, and if present, determines the
device from which the data will be read. 'File' may be specified as either an
absolute IOCB number (preceded by a #), or a variable of type FILE. If 'File' is not
specified, then the Atari keyboard is assumed to be the input device. Any number
of variables may be mentioned within a READ statement. 'File' may also be
repeated and sets the device to be used as input for each variable that follows it
until either another 'File' or the right parenthesis ')' is encountered.

Example: Refer to EOF and EOLN examples

BASIC Equivalent: INPUT #1;VARIABLE

REAL

Draper Pascal 2.1 Pascal Definitions

 Page 68

The REAL type code is used to define variables which are numeric but not integers
(contain decimal points) or have values outside the integer range (-32768 through
+32767, or 0 through 65535, depending on the setting of option 6 or 7). Each real
variable defined occupies three stack positions (six bytes). The format used is
identical to that used by BASIC and the Atari operating system. When a real
variable is set to a real constant value within a program, the constant must start
with an integer, and be followed by a decimal point, and optionally an exponent
portion.

Example:
 PROGRAM REAL_DEMO;

 VAR R:REAL;

 BEGIN

 R:=0.55E+3;

 WRITELN('R=',R)

 END.

BASIC Equivalent: All numeric variables used by Atari BASIC are considered
REAL numbers.

RECORD

The RECORD type code is used to define a variable, or group of variables, which
are to be read, written, or moved, as an entity in internal format. The variables
within the record must be uniquely named and are to be used exactly as if they
were not part of a record. The different fields within the record do not have to be
all of the same type. All variable types, including arrays, are supported, with the
exception of FILE and RECORD. An 'END;' must be present after the last field of
the record to indicate the end of the record.

WRITE, rather than WRITELN, should be used when writing records. If WRITELN
is used, an end of line character is written following the record and special
consideration must be given for it when reading the record back in.

Example:
 PROGRAM RECORD_DEMO;

 VAR REC1:RECORD;

 NAME:STRING[20];

 GRADE:REAL;

 AGE:INTEGER;

Draper Pascal 2.1 Pascal Definitions

 Page 69

 END;

 I:INTEGER;

 RECFILE:FILE;

 BEGIN

 REWRITE(RECFILE,'D:TEST.REC');

 FOR I:=1 TO 3 DO

 BEGIN

 WRITE('NAME:':10);

 READLN(NAME);

 WRITE('GRADE:':10);

 READLN(GRADE);

 WRITE('AGE:':10);

 READLN(AGE);

 WRITE(RECFILE,REC1)

 END;

 CLOSE(RECFILE);

 RESET(RECFILE,'D:TEST.REC');

 FOR I:=1 TO 3 DO

 BEGIN

 READ(RECFILE,REC1);

 WRITELN('NAME=',NAME);

 WRITELN('AGE=',AGE);

 WRITELN('GRADE=',GRADE)

 END;

 CLOSE(RECFILE)

 END.

BASIC Equivalent: None.

REPEAT REPEAT Stmt1; ... ;Stmtn UNTIL Condition;

REPEAT is used to loop through a group of statements until a specified condition
occurs. The statements are executed at least once, even if the UNTIL condition is
initially false. The condition is tested after the group of statements is executed.
'Condition' may be any normal expression. To test a condition before executing a
group of statements, use WHILE.

Example: Refer to example under EOF

BASIC Equivalent: None

Draper Pascal 2.1 Pascal Definitions

 Page 70

RESET PROCEDURE RESET(File,Filespec);

RESET is used to open a file which will be used in input mode. The IOCB is first
closed by RESET before the open takes place. 'File' must refer to a variable of
type FILE. 'Filespec' refers to the file specifications and may be either a string
literal (within quotes) or a string type variable.

Example: Refer to example under EOF

BASIC Equivalent: CLOSE #1
 OPEN #1,4,0,"D:TEST.TXT"

REWRITE PROCEDURE REWRITE(File,Filespec);

REWRITE is used to open a file which will be used in output mode. The IOCB is
first closed by REWRITE before the open takes place. 'File' must refer to a
variable of type FILE. 'Filespec' refers to the file specifications and may be either
a string literal (within quotes) or a string type variable.

Example: Refer to example under EOF

BASIC Equivalent: CLOSE #1
 OPEN #1,8,0,"D:TEST.TXT"

RND FUNCTION RND(Iexp):INTEGER;

The RND function is a random number generator. A random integer number is
returned between zero and the value of 'Iexp', inclusive. 'Iexp' may be any integer
expression.

Example:
 PROGRAM RND_DEMO;

 VAR I1,I2:INTEGER;

 BEGIN

 FOR I1:=1 TO 50 DO

 BEGIN

 I2:=RND(25);

 WRITELN(I2)

Draper Pascal 2.1 Pascal Definitions

 Page 71

 END

 END.

BASIC Equivalent: I2=RND(0)*25

SELECTKEY

This special built-in function returns a true value if the SELECT key on the Atari
keyboard is being pressed at the time the instruction is executed.

Example: Refer to example under OPTIONKEY

BASIC Equivalent: IF PEEK(53279)=2 THEN ...

SETCOLOR PROCEDURE SETCOLOR

 (Register,Hue,Luminance);

This built-in procedure is used to set the particular hue and luminance to be
assigned to a particular color register. 'Register' may be any integer expression
which results in a value in the range 0-4. 'Hue' may be any integer expression
which results in a value in the range 0-15. 'Luminance' may be any integer
expression which results in an even number in the range 0-14. For further
information on the SETCOLOR command, refer to the Atari BASIC manual.

Example:
 PROGRAM SETCOLOR_DEMO;

 BEGIN

 MAXGRAPH(3);

 GRAPHICS(3);

 SETCOLOR(0,2,8);

 PLOT(17,1);

 DRAWTO(17,10);

 DRAWTO(9,18);

 PLOT(19,1);

 DRAWTO(19,18);

 PLOT(20,1);

 DRAWTO(20,18);

 PLOT(22,1);

 DRAWTO(22,10);

 DRAWTO(30,18)

 END.

Draper Pascal 2.1 Pascal Definitions

 Page 72

BASIC Equivalent: Same as BASIC

SHL Expr1 SHL Expr2

The SHL operator performs a bitwise shift of 'Expr1' to the left by 'Expr2' bit
positions. Each bit position shifted is equivalent to 'Expr1' multiplied by 2. The
value returned is an integer and both 'Expr1' and 'Expr2' refer to integer type
expressions. When multiplying an integer by a value which is a power of two, the
SHL is more efficient than the multiply (*).

Example:
 PROGRAM SHL_DEMO;

 VAR I,J:INTEGER;

 BEGIN

 J:=2;

 I :=J SHL 8;

 WRITELN('2*256=',I)

 END.

BASIC Equivalent: I=J*(some power of 2)

SHR Expr1 SHR Expr2

The SHR operator performs a bitwise shift of 'Expr1' to the right by 'Expr2' bit
positions. Each bit position shifted is equivalent to 'Expr1' divided by 2. The value
returned is an integer and both 'Expr1' and 'Expr2' refer to integer type
expressions. When dividing an integer by a value which is a power of two, the SHR
is more efficient than the divide (DIV or '/').

Example:
 PROGRAM SHR_DEMO;

 VAR I,J:INTEGER;

 BEGIN

 J:=1024;

 I :=J SHL 7;

 WRITELN('1024/128=',I)

 END.

BASIC Equivalent: I=J/(some power of 2)

Draper Pascal 2.1 Pascal Definitions

 Page 73

SIN FUNCTION SIN(Var):REAL;

SIN is a function which returns the sine of the value of 'Var'. 'Var' may be either an
INTEGER variable or a REAL variable. The value returned is always REAL.

Example: Refer to the example under DEG

BASIC Equivalent: A=SIN(2)

SOUND PROCEDURE SOUND

(Voice,Pitch,Distortion,Volume);

This built-in procedure is used to support the sound capabilities of the Atari
computer. 'Voice' refers to one of the four sound registers and may be any integer
expression which results in a value 0-3. 'Pitch' is used to set the frequency of the
sound. It may be any integer expression which results in a value 0-255. 'Distortion'
is used to set the purity of the tone. It may be any integer expression which results
in an even number in the range 0-14. A value of 10 creates a pure tone. 'Volume'
determines how loud the tone will be played. It may be any integer expression
which results in a value 1-15. A value of 1 creates a barely audible sound and a
value of 15 creates a loud sound. A value of 0 is used to turn off the sound. For
additional information on SOUND, refer to the Atari BASIC manual.

Example:
 PROGRAM SOUND_DEMO;

 VAR I:INTEGER;

 BEGIN

 FOR I:=29 TO 121 DO

 BEGIN

 SOUND(0,I,10,10);

 WAIT(15) (* HOLD FOR 1/4 SECOND *)

 END;

 SOUND(0,0,0,0) (* TURN OFF SOUND *)

 END.

BASIC Equivalent: SOUND (Same as BASIC)

SQR FUNCTION SQR(Var):REAL;

The SQR function returns the square of the value of 'Var'. 'Var' may either be an

Draper Pascal 2.1 Pascal Definitions

 Page 74

INTEGER variable or a REAL variable. The value returned will always be REAL.

Example:
 PROGRAM SQR_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 R1:=10.0;

 R2:=SQR(R1)

 END.

BASIC Equivalent: R2=R1*R1

SQRT FUNCTION SQRT(Var):REAL;

The SQRT function returns the square root of the value of 'Var'. 'Var' may either
be an INTEGER variable or a REAL variable. The value returned will always be
REAL.

Example:
 PROGRAM SQRT_DEMO;

 VAR R1,R2:REAL;

 BEGIN

 R1:=10.0;

 R2:=SQRT(R1)

 END.

BASIC Equivalent: R2=SQR(R1)

STARTKEY

This special built-in function returns a true value if the START key on the Atari
keyboard is being pressed at the time the instruction is executed.

Example: Refer tp example under OPTIONKEY

BASIC Equivalent: IF PEEK(53279)=1 THEN ...

STATUS PROCEDURE STATUS(Iocbno,Ivar);

Draper Pascal 2.1 Pascal Definitions

 Page 75

This built-in procedure is used to retrieve status information from a particular
device. 'Iocbno' refers to either an absolute IOCB number (preceded by a #), or a
FILE type variable. 'Ivar' is an INTEGER variable which will contain the return code
of the STATUS command. The actual status values returned from the device can
be interrogated by using DVSTAT.

Example: Refer to example under DVSTAT.

BASIC Equivalent: STATUS (Same as BASIC)

STICK FUNCTION STICK(Number):INTEGER;

This function returns the status value of a particular joystick attached to the
computer. 'Number' refers to the controller jack that the joystick is plugged into. It
may be any integer expression which results in a value of 0-3. Values returned for
the various positions of the joystick are shown below:

 14

 10 6

 |

 11- 15 - 7

 |

 9 5

 13

Example:
 PROGRAM JOYSTICK_DEMO;

 VAR I:INTEGER;

 BEGIN

 REPEAT

 I:=STICK(0);

 WRITELN('Stick 0 is ',I)

 UNTIL KEYPRESS

 END.

BASIC Equivalent: I=STICK(0) (Same as BASIC)

STR FUNCTION STR(Var):STRING;

This built-in function is used to convert a number into it's string equivalent. 'Var'

Draper Pascal 2.1 Pascal Definitions

 Page 76

may either be an integer type variable or a real type variable.

Example:
 PROGRAM STR_DEMO;

 VAR I:INTEGER;

 R:REAL;

 S:STRING;

 BEGIN

 I:=20;

 S:=STR(I);

 WRITELN(S);

 R:=3.1416;

 S:=STR(R);

 WRITELN(S)

 END.

BASIC Equivalent: S=STR(I)

STRIG FUNCTION STRIG(Number):INTEGER;

This function is used to check on the status of the joystick trigger button. A value
of zero is returned if the button is being pressed at the time the instruction is
executed. A value of one is returned when the button is not pressed. 'Number'
refers to the controller jack that the joystick is plugged into. It may be any integer
expression which results in a value 0-3.

Example:
 PROGRAM STRIG_DEMO;

 VAR I:INTEGER;

 BEGIN

 REPEAT

 WRITELN('Press button on joystick 0 to stop')

 UNTIL STRIG(0)=0

 END.

BASIC Equivalent: IF STRIG(0)=0 THEN ...

STRING

STRING is a type code used to define variables which contain a number of

Draper Pascal 2.1 Pascal Definitions

 Page 77

characters. A fixed amount of memory is reserved for each string, but the actual
length of the string is variable. Any ATASCII codes may be contained within a
string variable. String variables may be defined with lengths of 1-255 characters.
The length specification is made by putting the length within brackets '[]' after the
word STRING. If no length code is specified, a default length of 80 characters is
assumed. The functions and procedures used to manipulate strings are CONCAT,
COPY, DELETE, INSERT, LENGTH, and POS.

Example:
 PROCEDURE STRING_DEMO;

 VAR A:STRING;

 B:STRING[10];

 C:ARRAY[5] OF STRING[20];

 BEGIN

 (* 'A' is a string of length 80 *)

 (* 'B' is a string of length 10 *)

 (* 'C' is a six element (0-5) string *)

 (* array with each element having *)

 (* a length of 20 *)

 END.

BASIC Equivalent: DIM A$(80) No equivalent for string arrays.

TRACEOFF PROCEDURE TRACEOFF;

This special built-in procedure is used to turn off a pseudo instruction code trace
that is active if turned on by TRACEON. The wraparound buffer used by the trace
is not released by TRACEOFF.

Example: Refer to example under TRACEON.

BASIC Equivalent: None

TRACEON PROCEDURE TRACEON;

PROCEDURE TRACEON('Number);

This special built-in procedure is used to turn on a pseudo instruction trace, for
debugging purposes. The trace table is maintained in a memory buffer. 'Number'
is used to specify the number of trace entries to maintain. It is a wraparound type
trace buffer where new entries overlay old entries if the buffer is not large enough

Draper Pascal 2.1 Pascal Definitions

 Page 78

to contain all of the instructions executed. Each trace entry is nine bytes long. The
trace entries may be displayed at program termination by entering CTRL-T. Refer
to the 'Supervisor' section of this manual for more information. 'Number' may be
any integer expression. If 'Number' (and the parentheses) are not specified, then
the trace is re-activated using an existing buffer from a previous TRACEON where
'Number' was specified. If the value of 'Number' is zero, then the trace buffer is
released from memory and the trace is turned off. Note that the MAXGRAPH
command will also turn off the trace and release the memory used for the trace
buffer.

Example:
 PROGRAM TRACE_DEMO;

 VAR NAME:STRING;

 BEGIN

 TRACEON(100);

 WRITE('Enter your name ');

 READLN(NAME);

 TRACEOFF

 END.

BASIC Equivalent: None

TRUE

TRUE is a BOOLEAN constant representing the true state. It is internally
equivalent to an integer constant of one.

Example: Refer to the example under BOOLEAN

BASIC Equivalent: None

UNLOCK PROCEDURE UNLOCK(Filespec);

This procedure is used to unlock a disk file which was previously locked. 'Filespec'
specifies the name of the file to be unlocked. It may be either a variable of type
string or a string literal (within quotes).

Example:
 PROGRAM UNLOCK_DEMO;

 VARIABLE FILENAME:STRING;

Draper Pascal 2.1 Pascal Definitions

 Page 79

 BEGIN

 FILENAME:='D:TEST.TXT';

 UNLOCK(FILENAME)

 END.

BASIC Equivalent: XIO 36,#1,0,0,"D:TEST.TXT"

VAL FUNCTION VAL(Svar):INTEGER or REAL;

This function is used to return the value of a string variable which contains a
number. 'Svar' must be a string type variable. The number must start at the
beginning of the string variable. REAL values are returned to REAL variables, and
INTEGER values are returned to INTEGER variables.

Example:
 PROGRAM VAL_DEMO;

 VAR I:INTEGER;

 R:REAL;

 S:STRING;

 BEGIN

 S:='1234';

 I:=VAL(S);

 WRITELN('VAL(S)=',I);

 S:='12.34';

 R:=VAL(S);

 WRITELN('VAL(S)=',R)

 END.

BASIC Equivalent: I=VAL(S$)

VAR VAR Name1,Name2,...,Namen : Type;

VAR Name1,Name2,...,Namen : ARRAY[Number]

 OF Type;

VAR is used to allocate variables to be used by a program. Variables which are
defined at the beginning of a program, before procedures and functions, are global
and may be referenced by any statement in the program. Variables which are
defined within procedures and functions are local variables and may only be
referenced by statements within those procedures and functions. Valid 'Type'
codes are FILE, CHAR, INTEGER, REAL, BOOLEAN, RECORD, and STRING.
Refer to the descriptions of the individual type codes for more information about

Draper Pascal 2.1 Pascal Definitions

 Page 80

them. ARRAYs may be specified for any type other than FILE or RECORD. Refer
to the description under ARRAY for more information. The variable names may be
any words that begin with a letter and are not the same as Pascal reserved words.
The name may be of any length, but only the first eight characters are significant
and must be unique. A section listing Pascal reserved words is included within this
manual.

Example: Refer to the example under STRING.

BASIC Equivalent: None for files. DIM for strings and arrays. None required for
numbers.

WAIT PROCEDURE WAIT(Number);

This special built-in procedure is used to suspend program execution for a
specified length of time. 'Number' is the number of sixtieths of a second for the
program to wait. A value of 60 is equal to 1 second. 'Number' may be any integer
expression.

Example: Refer to example under SOUND

BASIC Equivalent: None

WHILE WHILE Condition DO Statement;

WHILE is used to repeat execution of a statement until a specified condition is
false. 'Condition' may be any expression which results in a true (1) or false (0)
condition. The condition is evaluated before the statement is executed. If the
condition is initially false, 'Statement' will not be executed.

Example:
 PROGRAM WHILE_DEMO;

 VAR INPUT:FILE;

 DATA:STRING;

 BEGIN

 RESET(INPUT,'D:TEST.TXT');

 WHILE NOT EOF(INPUT) DO

 BEGIN

 READLN(INPUT,DATA);

 WRITELN(DATA)

Draper Pascal 2.1 Pascal Definitions

 Page 81

 END;

 CLOSE(INPUT)

 END.

BASIC Equivalent: None

WRITE WRITE(File,Expr1,Expr2,...);

WRITE(File,Expr1:Fldwdth...);

WRITE(File,Expr1:Fldwdth:Numdec...);

The WRITE is used to move data from memory to an external device, such as the
television/monitor screen, disk drive, cassette recorder, or modem. 'File' is
optional and, if present, determines the device to receive the data. If 'File' is not
present, then the screen is used. The variables may be of any type other than
FILE. Expressions are permitted in the WRITE statement. The end-of-line
character (carriage return) will not follow the data for WRITE (see WRITELN).
Integer numbers with values of zero through 255 may be sent to the output device.
For example, to send a form feed command to a printer (defined as file PRINTER),
you can use WRITE(PRINTER,CHR(12));. Numbers by themselves will print as
normal integer or real values. To write out an integer value in hexadecimal format,
precede the variable name or integer value with a percent sign (%). Literal
constants may be used in the WRITE statement, also. The literal must be
enclosed within a pair of single quote marks. It may be any character other than
a quote mark. To write a quote mark, say WRITE(CHR(39)), because 39 is the
ASCII value of the quote mark.

Write formatting is supported. Refer to the example under WRITELN.

Example: Refer to example under PROCEDURE

BASIC Equivalent: PRINT (followed by a semicolon)

WRITELN WRITELN(File,Expr1,Expr2,...);

WRITELN(File,Expr1:Fldwdth...);

WRITELN(File,Expr1:Fldwdth:Numdec...);

The WRITELN is identical to the WRITE except that an end-of-line character is
sent to the output device after the variables (if present) have been written. If no
expressions are present then only the end-of-line character is written. If all
parameters and the parenthesis are missing, then an end-of-line character is
written to the screen.

Draper Pascal 2.1 Pascal Definitions

 Page 82

Write formatting is supported. It is handled differently, depending on the type of
data to be written. To cause formatting to happen, follow the expression with a
colon (:) and then an integer expression, 'Fldwdth'. If the colon is not present, then
the value of the expression will be written with a field width equal to the number of
character positions that the data represents.

For integer values, 'Fldwdth' specifies The minimum field width. If 'Fldwdth' is
greater than the number of digits in the integer value, the value is right justified in
a field containing 'Fldwdth' positions. If 'Fldwdth' is less than the number of digits in
the integer value, the width of the field is increased to contain the full integer value.

For character data, 'Fldwdth' specifies the absolute field width. The character will
be right justified within the field.

For string data, 'Fldwdth' specifies the maximum field width. If 'Fldwdth' is greater
than the number of characters in the string, the string is right justified in a field
containing 'Fldwdth' positions. If 'Fldwdth' is less than the number of characters in
the string, then the string value will be truncated on the right and only 'Fldwdth'
characters will be written.

For real data, 'Fldwdth' performs the same as with integer data, but 'Numdec' is
permitted. If the second colon (:) and 'Numdec' are both omitted, then the real
value will be printed in scientific notation. When the second colon and 'Numdec'
are present, the real value is not printed in scientific notation, and 'Numdec'
specifies the number of decimal positions to be printed. 'Numdec' may be any
integer value from 0 through 254. If 'Numdec' is greater than the number of
significant decimal positions in the value, then zeros are added on the right until
'Numdec' decimal positions are taken. If 'Numdec' is less than the number of
significant decimal positions in the value, then the value written is truncated (not
rounded) after 'Numdec' decimal positions.

In the example that follows, a blank is represented by a lowercase letter b.

Example:

PROGRAM WRITELN_DEMO;

VAR I:INTEGER;

 R:REAL;

 C:CHAR;

 S:STRING[4];

BEGIN

Draper Pascal 2.1 Pascal Definitions

 Page 83

 I:=1234;

 R:=1.234;

 C:='A';

 S:='ABC'

 WRITELN(I); (* gives 1234 *)

 WRITELN(I,I); (* gives 12341234 *)

 WRITELN(I:1); (* gives 1234 *)

 WRITELN(I:7); (* gives bbb1234 *)

 WRITELN(R); (* gives 1.23400000E+00 *)

 WRITELN(R:7); (* gives 1.23400000E+00 *)

 WRITELN(R:16); (* gives bb1.23400000E+00 *)

 WRITELN(R:7:0); (* gives bbbbb1. *)

 WRITELN(R:7:1); (* gives bbbb1.2 *)

 WRITELN(R:7:5); (* gives 1.23400 *)

 WRITELN(R:2:5); (* gives 1.23400 *)

 WRITELN(C); (* gives A *)

 WRITELN(C,C); (* gives AA *)

 WRITELN(C:1); (* gives A *)

 WRITELN(C:3); (* gives bbA *)

 WRITELN(S); (* gives ABC *)

 WRITELN(S,S); (* gives ABCABC *)

 WRITELN(S:1); (* gives A *)

 WRITELN(S:3); (* gives ABC *)

 WRITELN(S:5); (* gives bbABC *)

END.

BASIC Equivalent: PRINT (not followed by a semicolon)

XCTL PROCEDURE XCTL(Filespec);

This special built-in procedure is used to transfer control to another Pascal
program. 'Filespec' may be either a string variable or a string literal (within quotes).
It must completely specify the P-code to be executed next. This means that the
'.PCD' extension must be present in the filename. If data is to be passed from the
current program to the next program, then it must first be stored somewhere (like
disk) by the current program and retrieved by the next program. If the program to
be transferred to is not on the diskette currently in the drive specified, a message
is given asking you to insert the correct diskette.

Draper Pascal 2.1 Pascal Definitions

 Page 84

Example:
 PROGRAM XCTL_DEMO;

 BEGIN

 XCTL('D:NEXT.PCD')

 END.

BASIC Equivalent: RUN "D:NEXT"

XIO PROCEDURE XIO(Number,File,Aux1,Aux2,Filespec);

XIO is used to perform special input/output operations. It may be used with any
device. One use is to fill an area on the screen between plotted points and lines
with a specific color. 'Number' is an integer number with a value in the range 0-255.
The number specified depends on the operation requested and the device. 'File'
may be either an absolute IOCB number (preceded by a #) or a variable of type
FILE. 'Aux1' and 'Aux2' are auxiliary control codes and are dependant on the
particular device and command number. 'Filespec' supplies the file specification to
the device handler. It may be either a string variable or a string literal (within
quotes). The standard values for 'Number' are as follows:

3 OPEN
5 GET RECORD
7 GET CHARACTERS
9 PUT RECORD
11 PUT CHARACTERS
12 CLOSE
13 STATUS REQUEST
17 DRAW LINE
18 FILL
32 RENAME
33 DELETE
35 LOCK FILE
36 UNLOCK FILE
37 POINT
38 NOTE
254 FORMAT

Example:
 PROGRAM XIO_FILL_DEMO;

Draper Pascal 2.1 Pascal Definitions

 Page 85

 BEGIN

 MAXGRAPH(5);

 GRAPHICS(5);

 COLOR(3);

 PLOT(70,45);

 DRAWTO(50,10);

 DRAWTO(30,10);

 GOTOXY(10,45);

 POKE(765,3);

 XIO(18,#6,0,0,'S:')

 END.

BASIC Equivalent: XIO 18,#6,0,0,"S:"

Draper Pascal 2.1 Pascal Definitions

 Page 86

 System Information

The Supervisor uses zero page locations $A0 - $BF. Locations $80 - $9F are
available for your use if desired. Various locations between $D4 and $FD are used
by the floating point routines. Page six ($600 - $6FF) is available for your use and
not used by the Pascal system.

The Supervisor is loaded into memory by DOS at the address $1D7C. If this
memory location is not available, then an error message is given, along with an
explanation of the probable cause of the problem. The pseudo code program to be
executed is loaded in memory immediately after the end of the Supervisor. The
pseudo machine stack extends from the end of the pseudo code program to the
MEMTOP position, just before screen memory.

 Filename Descriptions

The files named below are included in this ARC file:

AUTORUN.SYS Supervisor object code
COMPILER.PCD Compiler pcode
EDITOR.PCD Editor pcode
INIT.PCD Main Menu pcode
INIT.PAS Main Menu Pascal source
EXPLNERR.PCD Error code explainor (used by Compiler)
RSVDWRDS.TXT Reserved word list (used by Compiler)
ERRORS.TXT Text for compile errors (used by EXPLNERR.PCD)
RAMDISK1.DAT Ramdisk setup (See "Ramdisk Support")
RAMDISK2.DAT Ramdisk setup (See "Ramdisk Support")
RAMDISK3.DAT Ramdisk setup (See "Ramdisk Support")
NOTITLE.OBJ Used to suppress title (See "Suppressing the Title

Screen")
SAMPLE1.PAS Kaleidoscope sample program source
SAMPLE2.PAS Roman numeral sample program source
PASCAL.DOC Introduction manual

 Internal Data Formats

Variables are allocated on the stack. Variables of type FILE reserve no space on
the stack. The others are allocated as follows:

Draper Pascal 2.1 Pascal Definitions

 Page 87

VAR X:BOOLEAN 2 bytes
VAR X:INTEGER 2 bytes
VAR X:ARRAY[n] OF INTEGER 2 * (n + 1) bytes
VAR X:CHAR 2 bytes
VAR X:ARRAY[n] OF CHAR 2 * (n + 1) bytes
VAR X:REAL 6 bytes
VAR X:ARRAY[n] OF REAL 6 * (n + 1) bytes
VAR X:STRING[a] (Explained below)
VAR X:ARRAY[n] OF STRING[a] (Explained below)

Strings and string arrays have exactly the same format internally. The first two
bytes hold the actual number of elements in the string array. If it is not an array,
this value is 1. The next two bytes tell the maximum length of a string entry. This
ends the fixed part of string allocations. The remaining parts are repeated for as
many times as there are entries in the array. Only one set is present for non-array
string definitions. There is a one byte long prefix which shows the actual length of
that particular string entry. It is followed immediately by the data of the string. If the
maximum length of the string entries is an even number, then a one byte filler byte
is added to the end of each string entry. This is required because the variables are
stored on the stack and the stack width is two bytes. Non-array strings of 80 and
81 bytes long each, would each take up 86 bytes total. A two element string array
of length 10 would require 28 bytes total.

Records take up no extra displacement. They are used at compile time to specify
the range of fields to be included within the record.

 Suppressing the Title Screen

If you desire not to have the initial title screen displayed, the following procedure
will suppress it. Make the following modifications, using DOS, to the desired
diskette:

1. Unlock the file NOTITLE.OBJ.
2. Use the DOS copy function (C) to append the Supervisor (AUTORUN.SYS) to

the special prefix (NOTITLE.OBJ). Enter the following when prompted for the
filenames to be copied:

 AUTORUN.SYS,NOTITLE.OBJ/A
 The '/A' is required and instructs DOS to append the file.
3. Unlock AUTORUN.SYS.
4. Rename AUTORUN.SYS to something else (like AR.SYS).
5. Rename NOTITLE.OBJ to be AUTORUN.SYS.

Draper Pascal 2.1 Pascal Definitions

 Page 88

 Trace Format

A few lines of trace information would look like the following:

PC=0186 IN=20 04 00 00 SP=3DE0 SV=0000

PC=018A IN=02 88 13 SP=3DE0 SV=0020

PC=018D IN=10 0C SP=3DE2 SV=8813

PC=018F IN=60 07 00 SP=3DE0 SV=0100

PC=0192 IN=10 00 SP=3DDE SV=0020

The 'PC' stands for program counter. It actually refers to the offset of the
instruction to be executed. This corresponds to the offset shown on the left side of
the compile listing. The 'IN' stands for instruction. The one to four bytes following
it are the actual hex values of the pseudo code to be executed next. 'SP' stands for
stack pointer. It is the actual address of the current location on the stack. 'SV' is
stack value. The stack width is two bytes, so two bytes are shown. The actual
meanings of the various pseudo instruction codes are not included with this
manual but may become available in the future.

Draper Pascal 2.1 Pascal Definitions

 Page 89

 Reserved Word List

ABS DEG FUNCTION ODD READLN STRING

ADDR DELETE GOTOXY OF REAL THEN

AND DIV GRAPHICS OPEN RECORD TO

ARCTAN DO HIMEM OPTIONKEY REPEAT TRACEOFF

ARRAY DOS IF OPTIONS RESET TRACEON

ASC DOWNTO INSERT OR REWRITE TRUE

BEGIN DRAWTO INTEGER ORD RND UNLOCK

BLOAD DUMPSTK IORESULT PADDLE SELECTKEY UNTIL

BOOLEAN DVSTAT KEYPRESS PEEK SETCOLOR VAL

CALL ELSE LENGTH PLOT SHL VAR

CASE END LN POINT SHR WAIT

CHAR EOF LOCATE POKE SIN WHILE

CHR EOLN LOCK POS SOUND WRITE

CLOSE EXIT LOG PROC SQR WRITELN

COLOR EXP LPENH PROCEDURE SQRT XCTL

CONCAT EXP10 LPENV PROGRAM STARTKEY XIO

CONST FALSE MAXGRAPH PTRIG STATUS

COPY FILE MOD PURGE STICK

COS FOR NOT RAD STR

CVTREAL FUNC NOTE READ STRIG

 Operators

Operator Operation
________ _________

 := assignment

arithmetic:

 + addition
 - subtraction
 * multiplication
 / or DIV division
 MOD modulo (remainder after division)

Relational:

 = equality

Draper Pascal 2.1 Editor Command Summary

 Page 90

 <> inequality
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to

Logical:

 OR
 AND
 NOT

Draper Pascal 2.1 Editor Command Summary

 Page 91

 Editor Command Summary

A Add lines to end of file in memory. Terminate add mode by entering a null line.

C Change string of characters in one or more lines.

D Delete one or more lines.

E Edit one or more lines. Make change directly on the line presented.

F Filer commands

A Append disk file to end of file currently in memory.

D List disk directory on screen.

L Load disk file into memory. Anything currently in memory will be erased.

S Save file currently in memory onto disk.

I Insert before line number you specify. Terminate insert mode by entering a null
line.

L List lines from memory on the screen.

M Display Editor menu

P Print one or more lines on printer (P:).

Q Quit Editor execution and return to Main Menu screen.

S Scan one or more lines for character string you specify.

X Exit directly to the Compiler.

? Display Editor menu.

Draper Pascal 2.1 Editor Command Summary

 Page 92

 Error Messages

 Compile Time Error Messages

01: Compiler table overflow (max 170)
02: Number expected
03: '=' expected
04: Identifier expected
05: Constant type identifier, number, or string constant expected
06: 'BEGIN' expected
07: Too many nesting levels
08: ':' expected
09: '.' expected
10: ';' expected
11: Undeclared identifier
12: Invalid type of identifier
13: ':=' expected
14: 'END' expected
15: ';', 'ELSE', or 'END' expected
16: 'THEN' expected
17: '#' expected
18: 'DO' expected
19: '#' or FILE type identifier expected
20: '[' expected
21: ']' expected
22: ')' expected
23: Illegal factor or identifier type
24: INCLUDE file nesting too deep
25:
26: 'OF' expected
27: Mismatched data types
28: 'TO' or 'DOWNTO' expected
29: 'UNTIL' expected
30: Range error
31: '(' expected
32: ',' expected
33: Literal too long or missing end quote (')
34: 'END' but no RECORD started
35: Incorrect number of parameters
36: INTEGER type identifier expected
37: STRING type identifier expected
38: REAL type identifier expected
39: CHAR type identifier expected

Draper Pascal 2.1 Editor Command Summary

 Page 93

40: FILE type identifier expected
41: HEX type identifier expected
42: STRING constant expected

Draper Pascal 2.1 Editor Command Summary

 Page 94

 Execution Time Error Messages

INDEX TOO HIGH

This message occurs if an attempt is made to store a string array element into an
occurance that is higher than defined for the variable. For example, if you tried to
store the twentieth entry of an array that was only defined to hold ten occurances,
you would get the message. This message only applies to string arrays since other
array types are not checked for valid occurance numbers.

UNABLE TO OPEN DEBUG IOCB (7)

This message is issued if the list output device you specify in response to the
'WHERE? (FILESPEC)' prompt cannot be opened. The prompt is issued only for
the debug features trace and stack display.

CIO ERROR xxx FOR IOCB # y

Some kind of Input-Output operation was performed which resulted in an
abnormal return code from the Atari operating system. Refer to your BASIC or
DOS manual for the meaning of the error number 'xxx'. 'y' is the IOCB number
which the error occured on. Note that this message will not be printed if
OPTIONS(0) is in effect. In this case it is your responsibility to check the return
code by interrogating IORESULT after each I/O type instruction.

AT OFFSET

This message accompanies some other error message and refers to the offset
within the pseudo code of the instruction that had the error. Refer to the offset
shown on your compile listing to determine the Pascal instruction that experienced
the error.

STOPPED BY <BREAK> KEY

This message indicates that execution of the program was stopped because the
BREAK key was pressed. The offset of the instruction executing is shown in the
'AT OFFSET' message. Note that this message will not occur (and the program will
not stop after BREAK is pressed) if OPTIONS(4) is in effect.

INSUFFICIENT MEMORY

This message indicates that an attempt was made to increase the value of the

Draper Pascal 2.1 Editor Command Summary

 Page 95

stack pointer to a value which would overlay screen memory or the trace buffer, if
the trace was active. It may also be caused by manipulation of a record without
sufficient room between the top of the stack and the top of available memory
(MEMTOP) to temporarily hold it.

INVALID OPCODE

This message should not occur. It indicates that a pseudo instruction was
encountered which is invalid. If you get this message, it means that your '.PCD' file
has been corrupted somehow or an XCTL was made to a file that was not a
pseudo code file. To correct, re-compile the program in question. It may also occur
if you attempt to run a Draper Pascal program which was compiled under a
previous release of this software.

Draper Pascal 2.1 Editor Command Summary

 Page 96

 Main Menu Program

(* INITIAL MENU PROGRAM *)

(* AS OF 09/08/89 *)

(*$S+*)

PROGRAM INIT;

CONST CLEAR=125; CURSOR=752;

 ON=0; OFF=1;

 RAMTOP=$6A;

 LASTFILE=$1D82;

 DEFAULT_DRV=$1D94;

VAR BASENAME:STRING[11];

 PGMNAME:STRING[30];

 DATA:STRING[128];

 I,J:INTEGER;

 REPLY,DRIVENO:CHAR;

 DRIVE:STRING[3];

PROCEDURE PRESSANY;

BEGIN

 WRITELN;

 WRITE(' Press any key to continue ');

 READ(REPLY)

 END;

BEGIN (*MAIN*)

 DRIVENO:=PEEK(DEFAULT_DRV);

 DRIVE:=CONCAT('D',DRIVENO,':');

 GRAPHICS(0);

 POKE(CURSOR,OFF);

 WRITE(CHR(CLEAR));

 GOTOXY(2,0);

 WRITELN(' DRAPER PASCAL');

 WRITELN;

 WRITELN(' VERSION 2.1');

 WRITELN;

 WRITELN(' 1 - Run Program');

 WRITELN;

 WRITELN(' 2 - Disk Directory');

 WRITELN;

 WRITELN(' 3 - Compile Program');

 WRITELN;

 WRITELN(' 4 - Edit a Program');

 WRITELN;

 WRITELN(' 5 - Exit to DOS');

 WRITELN;

Draper Pascal 2.1 Editor Command Summary

 Page 97

 WRITELN(' 6 - List a file');

 WRITELN;

 WRITELN(' 7 - Trace on');

 GOTOXY(2,22);

 WRITELN(' Copyright 1989');

 WRITE(' by Norm Draper');

 GOTOXY(2,18);

 REPEAT READ(REPLY)

 UNTIL (REPLY>'0') AND (REPLY<'8');

 CASE REPLY OF

 '1': BEGIN (* Run Program *)

 REPEAT

 WRITELN(' Enter name of program to be run');

 WRITELN;

 POKE(CURSOR,ON);

 J:=ADDR(PGMNAME);

 FOR I:=0 TO 16 DO

 POKE(J+I,PEEK(LASTFILE+I));

 WRITE(' ');

 WRITELN(PGMNAME);

 WRITE(' ',CHR(28));

 READLN(BASENAME);

 J:=ADDR(BASENAME);

 FOR I:=0 TO 16 DO

 POKE(LASTFILE+I,PEEK(J+I));

 I:=POS('.',BASENAME);

 IF I<>0 THEN

 BEGIN

 J:=LENGTH(BASENAME);

 DELETE(BASENAME,I,J-I+1);

 WRITELN;

 WRITELN('Suffix not required, ignored');

 WRITELN

 END;

 IF POS(':',BASENAME)=0 THEN

 INSERT(DRIVE,BASENAME,1);

 PGMNAME:=CONCAT(BASENAME,'.PCD');

 OPTIONS(0);

 OPEN(#4,4,0,PGMNAME);

 I:=IORESULT;

 CLOSE(#4);

 IF I=170 THEN

 WRITELN(' Program not found ');

 OPTIONS(1)

 UNTIL I=0;

 WRITE(CHR(CLEAR));

Draper Pascal 2.1 Editor Command Summary

 Page 98

 XCTL(PGMNAME) END;

 '2': BEGIN (* Disk Directory *)

 CLOSE(#1);

 POKE(CURSOR,ON);

 WRITE('Filespec? ');

 READLN(DATA);

 POKE(CURSOR,OFF);

 IF DATA='' THEN

 DATA:=CONCAT(DRIVE,'*.*');

 IF POS(':',DATA)=0 THEN

 INSERT(DRIVE,DATA,1);

 IF POS(':',DATA)=LENGTH(DATA) THEN

 INSERT('*.*',DATA,LENGTH(DATA)+1);

 OPEN(#1,6,0,DATA);

 READLN(#1,PGMNAME);

 WRITE(CHR(CLEAR));

 WHILE NOT EOF(#1) DO

 BEGIN WRITELN(PGMNAME);

 READLN(#1,PGMNAME) END;

 CLOSE(#1);

 PRESSANY;

 PGMNAME:=CONCAT(DRIVE,'INIT.PCD');

 XCTL(PGMNAME) END;

 '3': BEGIN (* Compile Program *)

 MAXGRAPH(0);

 WRITELN('Loading Compiler...');

 POKE(CURSOR,ON);

 PGMNAME:=CONCAT(DRIVE,'COMPILER.PCD');

 XCTL(PGMNAME)

 END;

 '4': BEGIN (* Edit a Program *)

 MAXGRAPH(0);

 WRITELN('Loading Editor...');

 PGMNAME:=CONCAT(DRIVE,'EDITOR.PCD');

 XCTL(PGMNAME)

 END;

 '5': BEGIN (* Exit to DOS *)

 POKE(CURSOR,ON);

 DOS

 END;

 '6': BEGIN (* List a file *)

 WRITELN('Enter filename of file to be listed');

 POKE(CURSOR,ON);

 WRITELN;

 READLN(PGMNAME);

 POKE(CURSOR,OFF);

Draper Pascal 2.1 Editor Command Summary

 Page 99

 IF POS(':',PGMNAME)=0 THEN

 INSERT(DRIVE,PGMNAME,1);

 CLOSE(#1);

 OPEN(#1,4,0,PGMNAME);

 READLN(#1,DATA);

 WRITE(CHR(CLEAR));

 WHILE NOT EOF(#1) DO

 BEGIN WRITELN(DATA);

 READLN(#1,DATA) END;

 CLOSE(#1);

 PRESSANY;

 PGMNAME:=CONCAT(DRIVE,'INIT.PCD');

 XCTL(PGMNAME) END;

 '7': BEGIN (* Trace on *)

 POKE(CURSOR,ON);

 WRITELN('Enter number of entries to maintain: ');

 READ(I);

 TRACEON(I);

 PGMNAME:=CONCAT(DRIVE,'INIT.PCD');

 XCTL(PGMNAME) END

 END

END.

Draper Pascal 2.1 Editor Command Summary

 Page 100

 Editor Program

 Editor Program Source Listings

 (* EDITOR.PAS *)

PROGRAM EDITOR;

(* A part of Draper Pascal *)

(* By Norm Draper *)

(* As of 09/26/86 *)

(*$S+*)

(*$I D:EDITOR1.PAS *)

(*$I D:EDITOR2.PAS *)

(*$I D:EDITOR3.PAS *)

(*$I D:EDITOR4.PAS *)

(*$I D:EDITOR5.PAS *)

(*$I D:EDITOR6.PAS *)

(*$I D:EDITOR7.PAS *)

 (* EDITOR1.PAS *)

CONST CLEAR=125;BELL=$FD;ESC=27;

 UP=28;RIGHT=31;

 MAXLINES=251;MAXLENGTH=80;

 RAMTOP=$6A;

 LMARGIN=82;

 CURSOR_HORIZ=$55;

 DEFAULT_DRV=$1D94;

VAR CMD:CHAR;

 I,CHGSW,LM0,LM1,LASTLINE,LOW,HIGH,X,Y,SW:INTEGER;

 FILENAME,PGMNAME:STRING[30];

 DRIVE:STRING[3];

 DRIVENO:CHAR;

 DATA,DATA1,DATA2:STRING[MAXLENGTH];

 INPUT,OUTPUT:FILE;

 T:ARRAY[MAXLINES] OF STRING[MAXLENGTH];

PROCEDURE MENU;

BEGIN

 WRITE(CHR(CLEAR));

 WRITELN(' DRAPER SOFTWARE');

Draper Pascal 2.1 Editor Command Summary

 Page 101

 WRITELN(' EDITOR');

 WRITELN;

 WRITELN(' A - Add line(s) at end');

 WRITELN(' C - Change line(s)');

 WRITELN(' D - Delete line(s)');

 WRITELN(' E - Edit line(s)');

 WRITELN(' F - Filer menu');

 WRITELN(' I - Insert before line');

 WRITELN(' L - List line(s)');

 WRITELN(' M - Menu');

 WRITELN(' P - Print line(s)');

 WRITELN(' Q - Quit');

 WRITELN(' S - Scan line(s)');

 WRITELN(' X - Exit to Compiler')

END;

PROCEDURE SHOWLINE(NUMBER);

BEGIN

 IF NUMBER<100 THEN WRITE(OUTPUT,' ');

 IF NUMBER<10 THEN WRITE(OUTPUT,' ');

 WRITE(OUTPUT,NUMBER,':')

END;

PROCEDURE GETDATA(NUMBER);

BEGIN

 SHOWLINE(NUMBER);

 POKE(LMARGIN,LM1);

 READLN(DATA);

 IF IORESULT=137 THEN

 WRITELN(CHR(BELL),'Line ',NUMBER,' truncated');

 POKE(LMARGIN,LM0);

 POKE(CURSOR_HORIZ,LM0)

END;

 (* EDITOR2.PAS *)

PROCEDURE INC_LASTLINE;

BEGIN

 LASTLINE:=LASTLINE+1;

 IF LASTLINE>MAXLINES THEN

 BEGIN

 WRITELN('BUFFER FULL - STANDBY');

 LASTLINE:=MAXLINES

 END

END;

PROCEDURE GETRANGE;

Draper Pascal 2.1 Editor Command Summary

 Page 102

BEGIN

 LOW:=1;

 HIGH:=LASTLINE;

 WRITE('Line from -> ');

 READLN(DATA);

 IF DATA<>'' THEN LOW:=VAL(DATA);

 IF LOW<1 THEN LOW:=1;

 IF LOW>LASTLINE THEN LOW:=LASTLINE;

 WRITE('Line to -> ');

 READLN(DATA);

 IF DATA<>'' THEN HIGH:=VAL(DATA);

 IF HIGH<LOW THEN HIGH:=LOW;

 IF HIGH>LASTLINE THEN HIGH:=LASTLINE

END;

PROCEDURE EDIT;

BEGIN

 CHGSW:=1;

 GETRANGE;

 FOR I:=LOW TO HIGH DO

 BEGIN

 SHOWLINE(I);

 POKE(LMARGIN,LM1);

 WRITELN(T(I));

 FOR Y:=0 TO LENGTH(T(I)) / (40-LM1) DO

 WRITE(CHR(UP));

 READLN(T(I));

 POKE(LMARGIN,LM0);

 POKE(CURSOR_HORIZ,LM0)

 END

END;

PROCEDURE GETFN;

CONST LASTFILE=$1D82;

BEGIN

 WRITE('Enter filename -> ');

 Y:=ADDR(DATA);

 FOR X:=0 TO 16 DO

 POKE(Y+X,PEEK(LASTFILE+X));

 WRITELN(DATA);

 WRITE(' ',CHR(UP));

 READLN(FILENAME);

 Y:=ADDR(FILENAME);

 FOR X:=0 TO 16 DO

 POKE(LASTFILE+X,PEEK(Y+X));

 IF POS(':',FILENAME)=0 THEN

 INSERT(DRIVE,FILENAME,1);

 I:=LENGTH(FILENAME);

Draper Pascal 2.1 Editor Command Summary

 Page 103

 IF POS('.',FILENAME)=0 THEN

 INSERT('.PAS',FILENAME,I+1)

END;

 (* EDITOR3.PAS *)

PROCEDURE GETONE;

BEGIN

 WRITE('Line -> ');

 READ(LOW);

 IF LOW<1 THEN LOW:=1

END;

PROCEDURE SAVE;

BEGIN

 GETFN;

 Y:=0;

 REWRITE(OUTPUT,FILENAME);

 X:=IORESULT;

 IF X<>0 THEN

 Y:=X

 ELSE

 FOR I:=1 TO LASTLINE DO

 BEGIN

 WRITELN(OUTPUT,T(I));

 X:=IORESULT;

 IF X<>0 THEN

 Y:=X

 END;

 REWRITE(OUTPUT,'E:');

 OPTIONS(4); (* DISABLE BREAK KEY *)

 IF Y<>0 THEN

 WRITELN(CHR(BELL),'***Error ',Y,' while saving to disk');

 CHGSW:=0

END;

PROCEDURE CHECKUPD;

BEGIN

 IF CHGSW=1 THEN

 BEGIN

 WRITELN('File changed but not saved');

 WRITELN('Enter "I" to IGNORE and continue');

 WRITELN(' or "S" to SAVE and continue');

 REPEAT

 READ(CMD)

 UNTIL (CMD='I') OR (CMD='S');

Draper Pascal 2.1 Editor Command Summary

 Page 104

 IF CMD='S' THEN SAVE

 END

END;

PROCEDURE KEYBOARD;

BEGIN

 IF SW=1 THEN

 REPEAT

 SW:=SW

 UNTIL KEYPRESS;

 IF KEYPRESS THEN

 BEGIN

 READ(CMD);

 IF CMD=' ' THEN

 SW:=1

 ELSE

 SW:=0

 END

END;

 (* EDITOR4.PAS *)

PROCEDURE APPEND;

BEGIN

 REPEAT

 INC_LASTLINE;

 GETDATA(LASTLINE);

 T(LASTLINE):=DATA

 UNTIL DATA='';

 CHGSW:=1;

 LASTLINE:=LASTLINE-1

END;

PROCEDURE COMPILE;

BEGIN

 CHECKUPD;

 CLOSE(OUTPUT);

 MAXGRAPH(0);

 WRITELN;

 WRITELN('Loading Compiler ...');

 OPTIONS(5); (* ENABLE BREAK KEY *)

 PGMNAME:=CONCAT(DRIVE,'COMPILER.PCD');

 XCTL(PGMNAME)

END;

PROCEDURE DLTE;

BEGIN

Draper Pascal 2.1 Editor Command Summary

 Page 105

 GETRANGE;

 FOR I:=0 TO LASTLINE-HIGH-1 DO

 BEGIN

 X:=LOW+I;

 Y:=HIGH+1+I;

 T(X):=T(Y)

 END;

 CHGSW:=1;

 LASTLINE:=LASTLINE-(HIGH-LOW)-1

END;

PROCEDURE DIRECTORY;

BEGIN

 WRITE('Filespec? ');

 READLN(DATA);

 IF DATA='' THEN

 DATA:=CONCAT(DRIVE,'*.*');

 IF POS(':',DATA)=0 THEN

 INSERT(DRIVE,DATA,1);

 IF POS('.',DATA)=0 THEN

 INSERT('*.*',DATA,LENGTH(DATA)+1);

 OPEN(#5,6,0,DATA);

 READLN(#5,DATA);

 REPEAT

 WRITELN(DATA);

 READLN(#5,DATA)

 UNTIL EOF(#5);

 CLOSE(#5)

END;

 (* EDITOR5.PAS *)

PROCEDURE INSRT;

BEGIN

 CHGSW:=1;

 GETONE;

 GETDATA(LOW);

 WHILE DATA<>'' DO

 BEGIN

 FOR I:=LASTLINE DOWNTO LOW DO

 BEGIN

 X:=I+1;

 T(X):=T(I)

 END;

 INC_LASTLINE;

 T(LOW):=DATA;

Draper Pascal 2.1 Editor Command Summary

 Page 106

 LOW:=LOW+1;

 GETDATA(LOW)

 END

END;

PROCEDURE LIST;

BEGIN

 GETRANGE;

 FOR I:=LOW TO HIGH DO

 BEGIN

 SHOWLINE(I);

 POKE(LMARGIN,LM1);

 WRITELN(T(I));

 POKE(LMARGIN,LM0);

 POKE(CURSOR_HORIZ,LM0);

 KEYBOARD;

 IF CMD=ESC THEN

 I:=HIGH+1

 END

END;

PROCEDURE PRINT;

BEGIN

 GETRANGE;

 OPTIONS(0);

 REWRITE(OUTPUT,'P:');

 IF IORESULT<>0 THEN

 BEGIN

 WRITELN('PRINTER NOT READY ');

 WRITELN('PRESS START WHEN READY');

 REPEAT

 OPTIONS(0)

 UNTIL STARTKEY;

 REWRITE(OUTPUT,'P:')

 END;

 FOR I:=LOW TO HIGH DO

 BEGIN

 SHOWLINE(I);

 WRITELN(OUTPUT,T(I))

 END;

 OPTIONS(1);

 REWRITE(OUTPUT,'E:');

 OPTIONS(4) (* DISABLE BREAK KEY *)

END;

 (* EDITOR6.PAS *)

Draper Pascal 2.1 Editor Command Summary

 Page 107

PROCEDURE APNDFILE;

VAR IOR:INTEGER;

BEGIN

 OPTIONS(0);

 REPEAT

 GETFN;

 RESET(INPUT,FILENAME);

 IOR:=IORESULT;

 IF IORESULT<>0 THEN

 WRITELN('File not found');

 UNTIL IOR=0;

 WHILE NOT EOF(INPUT) DO

 BEGIN

 INC_LASTLINE;

 READLN(INPUT,T(LASTLINE));

 IF IORESULT=137 THEN

 WRITELN(CHR(BELL),'Line ',LASTLINE,' truncated')

 END;

 LASTLINE:=LASTLINE-1;

 CLOSE(INPUT);

 WRITELN(LASTLINE,' lines now in memory')

END;

PROCEDURE CHANGE;

VAR PRTSW:INTEGER;

BEGIN

 GETRANGE;

 WRITE('Change from ->');

 READLN(DATA1);

 WRITE('Change to ->');

 READLN(DATA2);

 Y:=LENGTH(DATA1);

 FOR I:=LOW TO HIGH DO

 BEGIN

 DATA:=T(I);

 PRTSW:=0;

 X:=POS(DATA1,DATA);

 IF POS(DATA1,DATA)<>0 THEN

 BEGIN

 CHGSW:=1;

 PRTSW:=1;

 DELETE(DATA,X,Y);

 INSERT(DATA2,DATA,X);

 T(I):=DATA

 END;

 IF PRTSW=1 THEN

Draper Pascal 2.1 Editor Command Summary

 Page 108

 BEGIN

 SHOWLINE(I);

 WRITELN(DATA);

 KEYBOARD

 END

 END

END;

PROCEDURE SCAN;

BEGIN

 GETRANGE;

 WRITE('Scan for ->');

 READLN(DATA1);

 FOR I:=LOW TO HIGH DO

 BEGIN

 DATA:=T(I);

 IF POS(DATA1,DATA)<>0 THEN

 BEGIN

 SHOWLINE(I);

 WRITELN(DATA);

 KEYBOARD;

 IF CMD=ESC THEN

 I:=HIGH+1

 END

 END

END;

 (* EDITOR7.PAS *)

PROCEDURE FILER;

BEGIN

 WRITELN(' A - Append file');

 WRITELN(' D - Directory list');

 WRITELN(' L - Load file');

 WRITELN(' S - Save file');

 REPEAT

 READ(CMD)

 UNTIL (CMD='A')

 OR (CMD='D')

 OR (CMD='L')

 OR (CMD='S');

 CASE CMD OF

 'A':BEGIN

 IF LASTLINE>0 THEN CHGSW:=1;

 APNDFILE

Draper Pascal 2.1 Editor Command Summary

 Page 109

 END;

 'D':DIRECTORY;

 'L':BEGIN

 CHGSW:=0;

 LASTLINE:=0;

 APNDFILE

 END;

 'S':SAVE

 END

END;

BEGIN (* MAIN *)

 DRIVENO:=PEEK(DEFAULT_DRV);

 DRIVE:=CONCAT('D',DRIVENO,':');

 CHGSW:=0;

 REWRITE(OUTPUT,'E:');

 MENU;

 OPTIONS(4); (* DISABLE BREAK KEY *)

 LM0:=PEEK(LMARGIN);

 LM1:=LM0+4;

 REPEAT

 WRITE('A,C,D,E,F,I,L,M,P,Q,S,X,?->');

 READ(CMD);

 WRITELN(CMD);

 CASE CMD OF

 'A':APPEND;

 'C':CHANGE;

 'D':DLTE;

 'E':EDIT;

 'F':FILER;

 'I':INSRT;

 'L':LIST;

 'M','?':MENU;

 'P':PRINT;

 'Q':;

 'S':SCAN;

 'X':COMPILE

 ELSE

 WRITELN(CHR(BELL),'Invalid command')

 END

 UNTIL CMD='Q';

 CHECKUPD;

 CLOSE(OUTPUT);

 OPTIONS(5); (* ENABLE BREAK KEY *)

 PGMNAME:=CONCAT(DRIVE,'INIT.PCD');

 XCTL(PGMNAME)

END.

Draper Pascal 2.1 Editor Command Summary

 Page 110

 Ramdisk Programs

 (* RAMDISK.PAS *)

PROGRAM RAMDISK;

(* As of 09/26/86 *)

(* This program checks to see if the Ramdisk has already been

 setup yet for Draper Pascal. If it has not been, then the

 required files are copied from drive one to the Ramdisk.

Then

 the default drive number is changed to the Ramdisk drive

number

 and control is transferred to the Ramdisk copy of INIT.PCD.

 The Ramdisk drive number is determined by the second entry

in

 the file D1:COPYLIST.TXT. *)

VAR CH:CHAR;

 RC,SUBADDR:INTEGER;

 DRIVEIN,DRIVEOUT:STRING[3];

 DATA,INPUT,OUTPUT:STRING[20];

BEGIN

 OPEN(#3,4,0,'D1:COPYLIST.TXT');

 READLN(#3,DRIVEIN); (* Input drive *)

 READLN(#3,DRIVEOUT); (* Output (Ramdisk) drive *)

 OUTPUT:=CONCAT(DRIVEOUT,'COMPILER.PCD');

 OPTIONS(0); (* Trap errors *)

 OPEN(#1,4,0,OUTPUT);

 RC:=IORESULT;

 OPTIONS(1); (* Stop trapping errors *)

 CLOSE(#1);

 IF RC <> 0 THEN

 BEGIN

 BLOAD('D1:COPYFILE.OBJ');

 SUBADDR:=PEEK($2E1);

 SUBADDR:=SUBADDR SHL 8;

 SUBADDR:=SUBADDR+PEEK($2E0);

 WRITELN('Copying:');

 READLN(#3,DATA);

 WHILE NOT EOF(#3) DO

 BEGIN

 INPUT:=CONCAT(DRIVEIN,DATA);

 OUTPUT:=CONCAT(DRIVEOUT,DATA);

 WRITELN(INPUT,' -> ',OUTPUT);

 CLOSE(#1,#2);

 OPEN(#1,4,0,INPUT);

 OPEN(#2,8,0,OUTPUT);

Draper Pascal 2.1 Editor Command Summary

 Page 111

 CALL(SUBADDR);

 CLOSE(#1,#2);

 READLN(#3,DATA)

 END

 END;

 CLOSE(#3);

 (* Change the default drive to the Ramdisk drive *)

 SUBADDR:=ADDR(DRIVEOUT)+2;

 POKE($1D94,PEEK(SUBADDR));

 OUTPUT:=CONCAT(DRIVEOUT,'INIT.PCD');

 XCTL(OUTPUT)

END.

 (* COPYFILE.M65 *)

10 .TITLE "FILE COPY UTILITY PROGRAM"

20 ; BY NORM DRAPER

30 ;

40 ; AS OF 09/04/86

50 ;

60 .ORG $5000 ;09/04/86

70 ; SPACE 2

80 ; Operating System Equates ------------------------

90 ; SPACE 1

0100 MEMLO .EQU $02E7 ;start of user memory

0110 ICCOM .EQU $0342 ;CIO command

0120 ICBAL .EQU $0344

0130 ICBAH .EQU $0345

0140 ICBLL .EQU $0348

0150 ICBLH .EQU $0349

0160 ICAX1 .EQU $034A

0170 ICAX2 .EQU $034B

0180 DOSINI .EQU $0A

0190 CIOV .EQU $E456 ;CIO vector

0200 EOL = $9B

0210 EOF = $88

0220 BELL = $FD

0230 IOCB1 = $10

0240 IOCB2 = $20

0250 OPEN = $03

0260 GETCHR = $07

0270 PUTCHR = $0B

0280 CLOSE = $0C

0290 OREAD = $04

0300 OWRIT = $08

0310 ;

Draper Pascal 2.1 Editor Command Summary

 Page 112

0320 START = *

0330 LDX #IOCB1

0340 LDA BUFFADR

0350 STA ICBAL,X

0360 STA ICBAL+16,X

0370 LDA BUFFADR+1

0380 STA ICBAH,X

0390 STA ICBAH+16,X

0400 LOOP = *

0410 LDX #IOCB1 ;RESET IOCB PTR

0420 LDA BUFFLEN

0430 STA ICBLL,X

0440 LDA BUFFLEN+1

0450 STA ICBLH,X

0460 LDA #GETCHR

0470 STA ICCOM,X

0480 JSR CIOV

0490 STY SAVEY ;SAVE CIO RC

0500 LDX #IOCB1 ;RESET IOCB PTR

0510 LDA ICBLL,X

0520 STA ICBLL+16,X

0530 LDA ICBLH,X

0540 STA ICBLH+16,X

0550 LDX #IOCB2 ;RESET IOCB PTR

0560 LDA #PUTCHR

0570 STA ICCOM,X

0580 JSR CIOV

0590 CPY #0

0600 BEQ OKAY

0610 RTS

0620 OKAY = *

0630 LDY SAVEY

0640 CPY #EOF

0650 BEQ DONE

0660 CPY #0

0670 BEQ LOOP

0680 DONE = *

0690 RTS

0700 ;

0710 SAVEY .BYTE 0

0720 BUFFADR .WORD ENDPGM

0730 BUFFLEN .WORD $BC00-ENDPGM

0740 ENDPGM = *

0750 .ORG $02E0

0760 .WORD START

0770 .END START

Draper Pascal 2.1 Editor Command Summary

 Page 113

 Sample Programs

 (* SAMPLE1.PAS *)

PROGRAM KALEIDOSCOPE;

VAR I,J,K,W,X:INTEGER;

BEGIN

 MAXGRAPH(3);

 GRAPHICS(19);

 X:=0;

 REPEAT

 FOR W:=3 TO 50 DO

 BEGIN

 FOR I:=1 TO 10 DO

 BEGIN

 FOR J:=0 TO 10 DO

 BEGIN

 K:=I+J;

 COLOR(J*3/(I+3)+I*W/12);

 PLOT(I+8,K);

 PLOT(K+8,I);

 PLOT(32-I,24-K);

 PLOT(32-K,24-I);

 PLOT(K+8,24-I);

 PLOT(32-I,K);

 PLOT(I+8,24-K);

 PLOT(32-K,I)

 END

 END

 END

 UNTIL X=99 (* UNENDING LOOP *)

END.

 (* SAMPLE2.PAS *)

PROGRAM ROMAN;

(* ROMAN NUMERAL SAMPLE PROGRAM *)

(* ADAPTED FROM PASCAL USER MANUAL AND REPORT BY JENSEN

AND WIRTH *)

 VAR X,Y:INTEGER;

 BEGIN Y:=1;

 REPEAT X:=Y; WRITE (X,' ');

Draper Pascal 2.1 Editor Command Summary

 Page 114

 WHILE X>=1000 DO

 BEGIN

 WRITE ('M'); X:=X-1000

 END;

 IF X>=500 THEN

 BEGIN

 WRITE ('D'); X:=X-500

 END;

 WHILE X>=100 DO

 BEGIN

 WRITE ('C'); X:=X-100

 END;

 IF X>=50 THEN

 BEGIN

 WRITE ('L'); X:=X-50

 END;

 WHILE X>=10 DO

 BEGIN

 WRITE ('X'); X:=X-10

 END;

 IF X>=5 THEN

 BEGIN

 WRITE ('V'); X:=X-5

 END;

 WHILE X>=1 DO

 BEGIN

 WRITE ('I'); X:=X-1

 END;

 WRITELN;

 Y:=Y*2

 UNTIL Y>5000

 END.

Draper Pascal 2.1 Editor Command Summary

 Page 115

 Printer Usage

 Printer usage with Draper Pascal

To print a Pascal source program, you can load the program into memory using
the Editor, as normal. Then use the 'P' command to print on the printer. The source
statements will be preceded by a line number and a colon.

There are two ways to print data from your program onto the printer. The first is
similar to the way it would be done in BASIC. An example is:

PROGRAM PRINT_1;

VAR I,J: INTEGER;

BEGIN

 OPEN(#2,8,0,'P:');

 FOR I:=1 TO 10 DO

 BEGIN

 J:=I*10;

 WRITELN(#2,I:10,J)

 END;

 CLOSE(#2)

END.

The above example prints a multiplication table on the printer. The second way to
print is by using a FILE type variable assigned to a printer. An example providing
the same results as above is:

PROGRAM PRINT_2;

VAR I,J: INTEGER;

 PRINTER:FILE;

BEGIN

 REWRITE(PRINTER,'P:');

 FOR I:=1 TO 10 DO

 BEGIN

Draper Pascal 2.1 Editor Command Summary

 Page 116

 J:=I*10;

 WRITELN(PRINTER,I:10,J)

 END;

 CLOSE(PRINTER)

END.

Draper Pascal 2.1 Editor Command Summary

 Page 117

 Software License

 Non-Exclusive, Royalty-free

 License to distribute the

 Draper Pascal Supervisor

I. Purpose

This royalty-free, non-exclusive license is provided to allow widespread use of
software developed using Draper Pascal. It applies only to the original purchaser
of Draper Pascal ("Licensee").

II. The License

Subject to the conditions stated herein, Draper Software will grant to the Licensee
a royalty-free, non-exclusive license to distribute the run-time system
("Supervisor"). Licensee is only authorized to distribute the Supervisor in object
code form and only in conjunction with software developed by Licensee which
requires the Supervisor for proper operation. Licensee shall not use or purport to
authorize any person to use any of the copyrights, trademarks, service marks, or
trade names of Draper Software without prior written consent from Draper
Software.

The Supervisor consists of the file named AUTORUN.SYS on the supplied
diskette. It may be distributed under another name if Licensee so desires.

The supplied Disk Operating System (DOS) is excluded and may not be
distributed by Licensee.

III. The License Term

This license will run for a term of five (5) years from date of license acceptance.
Extensions beyond that term may be secured by written permission from Draper
Software.

IV. Acceptance

The term of this license will begin two weeks after Licensee has signed and

Draper Pascal 2.1 Editor Command Summary

 Page 118

returned a copy of this license to Draper Software, providing that no reject notice
was sent to you by Draper Software within the two week period.

V. Additonal Terms and Conditions
A) Licensee understands and agrees that:

1) The Supervisor is distributed on an "as is" basis without warranty of any
kind from Draper Software.

2) The entire risk as to the performance and quality of the Supervisor is with
the Licensee.

3) If the Supervisor, as incorporated into Licensee's products proves defective
following it's purchase, Licensee and not Draper Software, Draper
Software's distributors, or retailers, assumes all costs associated with or
resulting from use of Licensee's products including all necessary repair or
servicing.

4) Draper Software shall have no liability to Licensee or to customers of
Licensee for loss or damage, including consequential and/or incidental
damage, caused or alleged to be caused, directly or indirectly, by the
Supervisor. This includes, but is not limited to, any interruption in service or
loss of business or anticipatory profits resulting from the use or operation
of the Supervisor.

B) Licensee shall indemnify and hold Draper Software harmless from any claim,
loss, or liability allegedly arising out of or relating to the operation of the
Supervisor as used by Licensee or customers of Licensee pursuant to this
license agreement.

C) Licensee shall not suggest, imply or indicate in any manner that any of
Licensee's software products which incorporate or use the licensed Supervisor
are approved or endorsed by Draper Software.

D) Licensee acknowledges that a failure to conform to the provisions of Section
V, Subsection C (above) will cause Draper Software irreparable harm and
Draper Software's remedies at law will be inadequate. Licensee acknowledges
and agrees that Draper Software shall have the right, in addition to other
remedies, to obtain an immediate injunction enjoining any breach of Licensee's
obligations set forth in Section V.C above.

E) No waiver or modification of any provisions of this license shall be effective
unless in writing and signed by the party against whom such waiver or
modification is sought to be enforced. No failure or delay by either party in
exercising any right, power or remedy under this license shall operate as a
waiver of any such right, power or remedy.

F) This license shall bind and work to the benefit of the successors and assigns
of the parties hereto. Licensee may not assign rights or delegate obligations
which arise under this license to any third party without the express written
consent of Draper Software. Any such assignment or delegation, without

Draper Pascal 2.1 Editor Command Summary

 Page 119

written consent of Draper Software, shall be void.
G) The validity, construction and performance of this license shall be governed by

the substantive law of the State of Texas and of the United States of America
excluding that body of law related to choice of law. Any action or proceeding
brought to enforce the terms of this license shall be brought in the County of
Dallas, State of Texas, if under state law.

H) In the event of any legal proceeding between the parties arising from this
license, the prevailing party shall be entitled to recover, in addition to any other
relief awarded or granted, its reasonable costs and expenses, including
attorneys' fees, incurred in the proceeding.

Draper Pascal 2.1 Editor Command Summary

 Page 120

Your Name ___

Company Name (if any) _____________________________________

Address ___

City, State, Zip __

Telephone Number __

Signature and Date __

