Action!
32K Cassette or Disk

h? Sol Guber

Structured programming is a way of thinking. It
divides the parts of a program into smaller and
smaller parts, and then, when the parts are very tiny
(and obvious), starls to write the program. This kind
of thinking is the basis of any FORTH program, first
the top-down, then the bottom-up. First, look at the
big picture, then keep looking at the littler and lit-
tler picture. Finally, from the details, build up the
big picture again. Action! uses the same thinking to
make up programs.

The game.

Color the Shapes is a game which was written us-
ing a top-down, then bottom-up type of program-
ming.

First, let's go over the game briefly. It's a competi-
tive coloring game for either one or two persons. The
object in the one-player game is to color in all the
shapes on the board with any of the four colors that
are shown on the bottom of the screen.

AMALOG COM P_UTING

snly rule is that shapes with aside in com-
1 cannot have the same colog If all they have. is
a corner in common, then they may share a color.
If you try to fill in a spot with a color that cannot
be used there, you'll hear a double beep, and a mes-
sage will be shown on the sereen.

To make the game more fun, there's an optian for
the computer to fill up to five shapes al random with
a random color. The object of the two-person game
is to be the last person to color a shape. That person
is the winner.

Since there's no way for the computer to determine
if there are any more legal moves, I've included an
option to quit. This is done by moving the cursor to
the Q on the bottom of the screen.

Figure 1 shows a sample board that will need to
be colored in. Each time the game is plaved, a new
board will be generated. The letters in the various
shapes are used later in the description of the data
structures.

Figure 2 shows a game in progress. The bottom

JULY 1985 / PAGE 35

S Color the Shapes continuca

A B cC| b E o P g| 0O P
F G P b
H]
I J K L M N B E s B Y |B
o P | ¥ F

(5] R S T|U f] 0 : BlY

Y 2 A Y B 5]
Y Z| a|l b c —! B Y| BlE X

d B| P 3
g By P
Figure 1. % 9 5 Figure 3.
] Y =
Figure 2.

of the board has been filled in with various colors.
Figure 3 shows a completed game.

The cursor is a star that is shown on the screen.
Color the Shapes can be playved with either a Koala-
Pad or a joystick. A question will be asked after the
entering of the players’ names, to determine if this
will be the jovstick version.

In the KoalaPad version, the cursor is moved by
pointing to the spot where vou wish to move. The
cursor will go there. In the joystick version. move
the joystick in the direction that you wish to go, and
the cursor will head that way.

The cursor’s color is the same as the color that will
be used to fill the shape. When the cursor is any-
where in the shape that vou wish to fill, just press
the trigger

To change colors for the fill, move the cursor to
any colored shape and press the trigger. This will
give a beep, and the cursor will move to the bottom
of the screen. By moving the cursor left or right, you
move to the position of one of the other colors, or
the Q. Press the trigger when the cursor is by the col-
or you wanl. You can change colors as many times
as you want.

Your turn will be over when you successtully fill
in a shape. There's no way to lose a turn.

PAGE 36 / JULY 1985

The structure.

Now that we know the basic outline of the game,
what does this have to do with structured program-
ming? That’s easy to see by looking at the last PROC
that was written.

It's just a long loop that does very logical things.
[t's made up of TITLE, PMGRAPHICS, SETUP, PM-
CLEAR, MAKEPM, GRID, SEARCH, CHECK__
BOARD, INIT, NAME and, finally, the major DO OD
loap. This loop just consists of two lines and a limit.

The first part of the PROC sets everything up and
checks to see what’s been done. The heart of the pro-
gram can be explained very simply by the two func-
tions TRIGGER and JOYSTICK.

TRIGGER checks to see if the trigger has been
pressed. JOYSTICK checks to see if a move’s been
made. IF TRICGER = 0 then COLOR__IN(SPOT]). IF
JOYSTICK =1 then MOVE(). Do this until either the
board is completed or QUIT = 1. How could any pro-
gram be simpler?

This is the whole point of structuring programs:
break everything down into easy-to-digest unilts that
are logically simple. While the game's going on, the
only two things to look at are the triggers and either
the joystick or the KoalaPad.

How long should the program monitor these two

ANALOG COMPUTING

things? Until the game is complete, or someone quits.
Then what? Ask if another game is desired. If it is,
play again; otherwise, finish. There's no need to mon-
itor the kevboard, get data from the disk, or do any-
thing else.

Structured programming uses the concepts of posi-
tive actions. Do an action until something happens
or a flag is set or while a condition still occurs. It
can be used in all parts of the program to make the
programming easier and very logical. Let me go into
some more details on how this type of thinking; the
idea to do while or until is a very nice concept.

This simplicity is used in other parts of the pro-
gram. Let us go through several of the other proce-
dures and functions. If the trigger has been pressed,
TRIGGER() = 0 and we will C=COLOR__IN(SPOT).
There are several options in that procedure. If the
spot has a color there, B(SPOT) < >0, then what we
want to do is change colors or quit. A loop is set up
so that we continue to PICK_COLOR until a flag
is returned to say that it is non-zero. A good pick
has been done. If quit is one, then return. Otherwise
move the cursor back to where it was and continue
the turn. If the spot had not been colored in already,
then we must check to see if it is a GOOD_COLOR,
If the flag is returned as 0 then BEEP. print a mes-
sage on the screen, BEEP again, and then RETURN.
Finally, if it is a good move, then FILL__IN(SPOT),
check to see if there are two players, and write the
new name on the screen.

JOYSTICK is another example of a simple proce-
dure that does only one thing; it checks to see if there
has been any movement in the joystick or the Koala-
Pad. CFLAG is used to signal that the KoalaPad is
to be used. If it's on, check the two locations in mem-
ory that store the value of the point on the pad that’s
being touched. If either point is less than five, then
the pad is not being touched. RETURN a zero to show
no movement. Next, calculate the X and Y position
of the point that’s being touched. If the movement
is only slight, then RETURN a zero to again show
no good movement. Otherwise, set the new X and
Y positions to this point, and return a 1 to show
SUCCEess.

The other part of JOYSTICK() is used if play is with
a joystick. First determine the value of the joystick.
If it is 15, RETURN a zero to show no move. If the
value is 11 and vou can move left, then move left and
return a 1 for success. If it is 7 and you can move
right, then make the new position and return a suc-
cess. Do this for up and down. If no move was pos-
sible, return a zero for unsuccessful move.

ANALOG COMPUTING

Both of these two procedures show how the logic
was broken up into simple steps, each one of which
was very obvious. There were other parts of the pro-
gram that took judgement and thinking. They're not
really a part of structured programming, but are nec-
essary, anyway.

There's a lot of data stored about the screen. See
Figure 1 for an example of an initial board. It’s a nine-
by-nine grid and can have many shapes in it.

Color the Shapes.

There are four data structures that were used to
store information about the shapes. The first was an
array called R. It is a simple one-to-one correspon-
dence to the grid on the screen. The first value cor-
responds to the top square; the one below is R(11);
and so forth.

To make some of the calculating easier, the array
for R was made up to be ten squares by nine rows.
R is filled with numbers corresponding to the shapes
that are seen. Thus, the first shape (Figure 1) will
put R(1)=1, R(2) =1, R(12) =1, R(13) =1, R(23) =1, etc.

The array B is a simple correspondence to array
A. It just contains the color values of each square in
the grid. The next array is GAR. Shape A corresponds
to GAR(1), shape B corresponds to GAR(2], etc. The
values in GAR tell how big the shapes are. The val-
ue is a two-digit number. The units digit is the row
for the top of the shape, and the tens digit is the row
for the bottom of the shape.

Thus, shape G is GAR(7) and has a value of 11.
Shape M is GAR(13) and has a value of 43, and shape
A gives GAR(1) = 30. The final array is called USED.
It corresponds to GAR and tells if each shape has
been colored in. Every time a shape is filled with
color, the corresponding shape in USED is given a

JULY 1985 | PAGE 37

S Color the Shapes continued

1. Thus the function COMPLETE, to determine if the
game is over, just looks at each value in USED, and
if there's a 1 in each spot, then all the shapes have
been colored in.

Now that we have some information on how the
data is stored, we can look at some of the other func-
tions and see how simple they are to program.

Let's look at FILL__IN. First, we determine the
number of the shape where we are from array R. Find
the top and bottom rows of that shape from array
GAR, and set the USED shape to 1. Then set up a
little loop from the bottom row of the shape to the
top row of the shape. If the value in R is that shape,
then set B to that color, and FILLER that square.

FILLER’s another little subroutine. Check to see if

the right side is a line and the bottom is a line. You
should change values if they are. Then, just do a sim-
ple PLOT, DRAWTO routine to fill in with the color
selected.
A very similar logic is used in the function GOOD
COLOR. First, determine the shape yvou're on from
array R. Then, find the top and the bottom of the
shape from array GAR.

Start at the bottom row and check each square. If
it's part of the same shape as the one that we're look-
ing at, check all four squares around it to see if the
color is present there, If it is, return a 0 to show fail-
ure. If everything’s been checked, and no two colors
will be touching, report a success (RETURN(1)).

Among the things that 1 haven't done is explain
how some of the data is generated, or how the ran-
dom shapes are made, but the logic in this part is
also very straightforward and can be explored, if
needed.

This game is a good example of two things. The
first is that Action! makes structured programming
very easy. The second is that, with good simple log-
ic on the overall design of a program, it can be split
into smaller and smaller parts. Each part can be fur-
ther divided into parts that are easily programmed.

I hope you enjoy Color the Shapes. My daughter
and I had fun inventing it. It's a good game of lnglc
from which you can learn about programming.

Sol Guber has been programming for his Atari 800
for five vears now. The idea for this game came from
his seven-year-old daughter Rebecca, to whom com-
puters are a natural part of life.

PAGE 38 / JULY 1935

Listing 1
Action! listing.
COLOR THE SHAPES
by Rebecca Guber and 50l Guber
MODULE

BYTE ARRAY

RC1068) ,USED(60) ,PLAYER(28) ,B(90),

CL5=704,Aa(i8) ,GAR(60)

INTER=[72 169 8 141 10 212 141 27
208 104 6541,

TH=I[® 252 O 41,TY= [2!3 8 8 81,

TEST=[246 255 i@ 11,

COLORS=[8 1227 88 28 132 248 1990

14 19861,
STAR=I[O @ 0 8 24 126 60 60 126 24
a4 8 8 81

CARD SC1,YP1,YP,
BYTE CFLﬁﬂ coL FLﬂ?HHH,GﬂHﬂT DH,DY,
OLDH, ﬂLﬁY » TURN,

PROC SETUPO
CaARD Z

Z=PEEKC (568)
POKE(Z+166,143)
POKEC (512, INTER)
POKE (54286,1%2)
POKE(87,10)
POKE(623,160)

FOR Z=68 T0 8 DO
CLS(Z)=PEEK(COLORS+2Z)

oD

RETURN

PROC BLOCK(BYTE I

BYTE .

FOR J=152 T0 157 DO
PLOT (I,.))
DR#HTU!I+5 J

oD
RETURN

PROC MEMWDIR(BYTE 4.,B)
DX=0

DY=0

IF LﬂﬂﬁTE(ﬁ*l B)>»8 THEN

ELgEEFILﬂCﬁTEIﬁ 1,B)>8 THEN
ELEEIFILﬂGﬂTElﬂ +B-13>8 THEN

ELSE
DY=1
FI
RETURN
BYTE FUNC LINE(BYTE a,B)
BYTE Z.,J

Z=LOCATE (A+1,B)
J=LOCATE(A-1,8)

J
LﬂﬁﬁTEtﬁ B+1)

J-annrttn.a 1)

==+l

IF Z»6 THEN
RETURNC(Z)

FI
NEWDIR (4, B)
RETURN(1)

PROC REMOVE(BYTE a,B)
Do

LT TR T}

ANALOG COMPUTING

PLOTIA,B)

A==+DX

B==4DY

UNTIL LINECA,B){>1

oD
RETURN

PROC GRIDO)

BYTE I,¥,Y,Z,X0LD,YOLD,Y1

COLOR=86

I=2

HHILE I{157 DO
PLOTI(I,I)
DRﬁHTUt?I I
I==+16

oD

I=3

HHILE I<{79 DO
PLOTL(I,2)
DRAWTOLI,145)
I==+8

op

FOR I=2 T0 S DO
COLOR=IX
BLOCK((I-2)%*18+5)

oD
COLOR=6
PLOT (45,153)
DRAWTO (58, 153)
DRAWTO (58, 157)
DRAWTOC(45,157)
DRAHTOL45,153)
PLOT (51, 158)
COLOR=0
FBEOI:I TO 46 DO
H=RAND (8) %¥8+7
Y-RAND (16)%8+10
Y1=Y-18
IF Y1/8=(Y1/16)%2 THEN
H=o=+4

FI
ﬂoHHTIL LOCATE(X,Y) (>0

HOLD=X
YOLD=Y
IF Y1/8=(Y1/16)%2 THEM
DX=0
DY=-1
REMOVE (X, V)
DX=9
DY=1
REMOVE (XOLD, YOLD)
ELSE
DY=0
DH=-1
REMOVE (X, Y)
DY=0
pH=1
FIREHﬂUE[HﬂLD,?oLDJ
oD
RETURN
PROC 111LE¢1
BYTE X ,K1,K2
CARD 5E,J
SC1=PEEKC (88)
GRAPHICS (19)

SC=PEEKC(568)
FOR J=7 TO 9 DO
POKE(5CY), 7D

oD

POKE(87,2)

COLOR=8

PLOT(G,1)

PRINTDE(6,"COLOR THE SHAPES")

ANALOG COMPUTING

PRINTDE(G," ii i iiiii iiher“l
PRINTDE (6," [LDESTTSRATIH4"")
POKE(&7, 3)

FOR J=1 TO 16900 DO

FOR K2=1 T0 568 DO
ap

H=RAND(39)
Y=RAND(12) +8
C=RAND (255)
50UND(O,C,8,8)
COLOR=RAND (43}
PLOT(IX,Y)

oD
S50LUND(B,8,06,8)
RETURMN

BYTE runc HEHﬁPﬂTtBYTE J,COUNT)
BTTE K »
R(J 11 é
Yl:(lJ-llflﬂl*lﬁ*lﬂ
Ki=((J-1) MOD 10)¥*3+7
FOR K=@ TO 3 DD
Z=LOCATE (R1+THIK) , Y14TY (KD)
K1ZJHTEST (IO
IF Z=0 AND R(K1)=0 THEN
RIK1)=COU
RETHRHIHIJ
FI

oD
RETURN (8]

BYTE FLNC OLDSPOT(BYTE .J,COLNT)
BYTE K,K1
REJ)==-128
K=3
HHILE K<{>255 DO
K1=J+#TEST (KD
IF K1>8 AND K1<160 THEN
IF R(K1)>128 THEN
RIK1)==-128
RETURNIK1)
FI

FI

=—==1
op
RETURN (2)

PROC FIND(BYTE J,COUNT)
BYTE K,K1

R (J)=COUNT

Do

K=NEWSPOT(J,COUNT)

IF K=@ THEN
Ki1i=OLDSPOT(J,COLNT)
J=K1

ELSE
J=K

FI

UNTIL J=8
op
RETLURN

PROC SEARCHO)
BYTE J,COLNT,K,K1
ZERO(R,108)
COUNT=1
FOR J=1 TO 89 DO
IF RCJ)=8 AND J MOD 18<{>@ THEN
FIND(J,COLNT)
COUNT==+#1
FI
oD
FOR J=1 TD 89 DO
IF RCJI>128 THEN
FIRIJ]"*lZﬂ

oD
RETURN

JULY 1985 / PAGE 39

é Cﬁlﬂl‘ the Shapes continued

; PMG.ACT FROM THE ACTION! TOOLKIT

INCLUDE "Di:PMG.ACT"™

BYTE FUNC SIZE(BYTE K)
BYTE J
FOR J=K+1 TO K+9 DO
IF RUJI=COUNT THEN
FIHETHHH{IJ

oD
RETURN (82>

PROC CHECK_BOARD (3
B?TE J K

LUNT=
ron J= 1 T0 99 DO
IF J MOD 1@ <>@ THEN
HHILE+EtJJ(t0UHT AND J<1i88 DO
oD
GAR(COUNTY=J 18
K=€J/10)%10+190
HHILE SIZE(K)=1 DO
K==+18
oD
GAR(COUNTI ==+ ({K-18)
COLUNT==+#1
FI
oD
COUMNT==-1
ETURN

PROGC SHIFT(BYTE H1)
BYTE 2,71
IF H1=140 THEN
QuIT=1
RETURN

I

={di- ﬁﬂiffﬂ*l
ﬂ L=Z+
Zi= PEFK{?05+E) 6
POKE (785,71)
RETURN

PROC BEEP ()

CARD 0
SOUND{(0B,229,16,18)
FOR Q=1 TO 25000 DO

oD
EUUHDIB 8,0,0)
RETU

BYTE FLMC PICK_COLORO)

BYTE 5,TR,J,H1

CARD 11

FOR Ii=0LDY TO 173 DO
PHHOVE{L X, IL)

op
oLDY=173
PRINTE(“PLEASE PICK a4 COLOR")
H1=68
PMHPOS (1) =69
IF gFLﬂG:l THEN
D

JZPEEK(GZ4)

IF J>»5 THEMN
JZ(/5020460
PMHPOS (1) =

Fl
IF PEEK(636)=@ OR
PEEK(637)=0 THEN
BEEP (2
SHIFT L.
IRETURH(I]

PAGE 40 / JULY 1985

5=STICK (@)
TR=STRIG (D)
IF TR=® THEN
BEEP ()
SHIFT(H1)
FIRETHRH(IJ

UNTIL 5¢{>15
oD

IF 5=7 THEN
Hi==+20
IF ¥1=168 THEN
K1=68
FI
FI
IF S=1i1 THEN
Ki==--28
IF X1=48 THEN
Hi=1449
FI

FI
PHHPOZ(1) =M1
Egﬂ I1=1 T0 co008 DO

op
RETURN (1)

BYTE FUNC GOOD_COLOR(BYTE SPOT,COL)
BYTE TOP,BOT,BLOCK,I
BLOCK=R(S5POT)
TOP=GAR(BLOCK)
BOT=(TOP MOD 10)%1@
TOP=(TOP/10) %18
HWHILE BOT{TOP+% DO
IF R(BOT)=BLOCK THEN
FOR I=® T0 I DO
IF B(BOT+TEST(IX)=COL THEN
FIHETURHIB]

ap
FI
BOT==+1
op
RETURNC1)

PROC FILLER(BYTE U}
BYTE X,Y.K,L,L1
L1=6

IF EIJ) ZR({J+1) THEN

FI

L=14

IF RCJIZR(J+18) THEN
L==+1

F1

Ho(J/18) %1647

Y={J) MOD 18)%3-4

FOR ¥=M TO H*L DO
PLOTCLY,K)
DRAWTO(Y+LL , KD

op
RETURN

PROC FILL_IN(BYTE SPOT)
BYTE N, TOP,BOT.)

N=R (S5POT)

TOP=GAR(N)

BOT=TOP MOD 1@
TOP=(TOP/10) %18
USED (N3 =1

{Action! listing continues on page 88)

ANALOG COMPUTING

Color the Shapes

continued from page 40

FOR J=BOT TO TOP+9 DO HHILE 0<{}X DO
IF R{JI=N THEN PMMOVE(1,0,0LDY)
B{J)=COLOR R==+DEL
FILLERC(.J) oD
FI OLDX=X
oD FOR K=1 TO 2688 DO
RETURN Flﬂﬂ
PROC INITO) IF OLDY{>Y THEN
BYTE K,J,M,N,C N=0LDY
ZERD(PLAYER, 282 DEL=SGH (OLDY, Y)
ZERO (B, 99) HHILE a<{}Y DO
ZERD (USED, 68) PMMOVE (1,X,0)
PUT€(125) N==+DEL
PRINTE(*1 OR 2 PLAYERS?"™) oD
PLAYNMUM=INPUTB () oLpy=Y
PRINTE (*"HHAT IS YOUR NAME?"™) FI
INPUTS (A) RETURN
FOR K=1 TD A(8) DO
PLAYER(K)=A (K] BYTE FLUNC TRIGGER()
oD IF CFLAG=1 THEN
IF PLAYNUM=2 THEN IF PEEK(636)=0 OR PEEK(637)=0 THEN
PRIMTE (""NAME OF 2ZND PLAYER?'™) RETURN (@)
INPUTS(A) FI
FOR K=1 TO A(8) DO ELSE
PLAYER({K+18)=A{K) IF STRIGEO)=8 THEN
oD RETURN ()
FI FI
PUT(125) FI
PRINT("USE A KOALA PAD (Y/N)?2'™) RETLRN (1)
CFLAG=0
INPUTS (A) BYTE FUNC ABS{(BYTE a,B)
IF a(1)="Y THEN IF A>B THEN
FIcrLas:1 FInErunltn—BJ
PRINTE("FILL SOME SHAPES IN7') RETURMN{B-a)
INPUTS (A)
IF aCi1){>'Y THEN BYTE FLNC JOYSTICK()
RETURN EYTE P,X1
FI IF CFLAG=1 THEN
PUTC(125) Hi=PEEK (624)
PRINTE("HOW MANY SHAPES, UP TO 57') Y1=PEEK (625)
J=INPUTB) IF H1i<{5 OR Y1<{5 THEN
J==MOD 6 RETURNCO)
FOR K=1 TO J DO FI
Do H1=56+(X1/28) %16
M=RAND (COLUNT-1)+1 Yi=36+(Y1/28)%16
UNTIL USED(M)=8 IF ABS(X1,0LDH) {5 THEN
op RETURN (9)
N=M ELSEIF ABS(Y1,0LDY)<{5 THEN
RETURN (8]
==+1 FI
UNTIL RIN)=M H=X1
oD Y=yY1i
Do RETURN (1)
C=RAND (4) +2 FI
UNTIL GOOD_COLORIN,C)=1 P=STICK(8)
0D IF P=15 THEN
COLOR=C RETURN ()
FILL_INCN) FI
USED (M) =1 IF P=11 AND OLDX>60 THEM
oD H=OLDX-16
RETURN RETLURMN (1)
ELSEIF P=7 AND OLDX{18@ THEN
BYTE FLUNC SGN(BYTE I,J) H=OLDX+16
IF I=J THEN RETURN (1)
RETURN (0) ELSEIF P=14 AND OLDY>S1 THEN
ELSEIF I>J THEM Y=OLDY-16
RETURNC(-1) RETURN (1)
FI ELSEIF P=13 AND OLDY{152 THEM
RETURN(1) Y=OLDY+16
RETURN(1)
PROC MOVE () FI
BYTE @,DEL RETURN(O)
CARD K
IF OLDH{>X THEN BYTE FLNC COMPLETE ()
O=0LDX BYTE J
DEL=SGN (DLDX, %) FOR J=1 TO COUNT-1 DO

PAGE 88/ JULY 1985 ANALOII_E _C_:DMPUIING

IF USEDC(J)=8 THEN
FI!ETHHH[G)

oD

RETURN{1)

PROC NAME ()

BYTE J

PUT(125)

FOR J=TURN¥*10+1 TO TURN¥%10+i6 DO
PUT(PLAYERC.J2)
IF PLAYER(J+1)=0 THEN

EXIT
FI

oD
PRINTEC("'S TURN')
RETURN

PROC COLOR_INCBYTE 5SPOT)
BYTE K

CARD K1

IFnBISPﬂTi{}G THEN

0
UNTIL PICK_COLOROY ()@

op

MOVE ()

IF QUIT=1 THEMN
IHETHRH

F

K=OLDX
Y=OLDY
MOVE OO
RETURN

FI

IF GOOD_COLORC(SPOT,COL)=8 THEN
BEEP Q)
PRINT ("'YOU CANNOT USE THaT')
PRINTE(" COLOR THERE')
BEEP ()
RETLRN

FI

COLOR=COL

FILL_IN(SPOT)

IF PLAYNUM=2 THEN
TURN==! 1

FI

NAME (3

FOR Ki=1 TO Zeeée DO

oD

RETURN

PROC SHAPE5S Q)

BYTE aA,5PO0T,.J

Do
TITLE()
ElﬂPH%C&(B]

PMGRAPHICS (1)
SETUP ()

POKE(785,22)
PﬁlE(GEI,IiﬂJ
PMCLEAR(1)
MAKEPM(5TAR,14,1,2,156,126)
H=56

Y=316

OLDH=8
oLpY=08

MOVE ©)
COLOR=3

COL=3

GRID ()

TURN=®
SEARCH ()
CHECK_BOARD OO
INIT)

NAME ()

Do

ANALOG COM PLiTING

IF TRIGGER()=8 THEN
COLOR_INC(SPOT)

FI

IF JOYSTICK()=1 THEN
FIHDUE(J
SPOT=(X-38)/16+18%(Y-3I6) /16
UNTIL COMPLETE{>=1 OR QUIT-=1

oD
IF COMPLETE()=1 THEN
FOR J=TURN¥*10+1 TO TURN¥i0+16 DO

PUT (PLAYER(.J))
IF PLAYER(J+1)=8 THEN
EXIT
FI
oD
FIPHIITEI" IS5 THE MWINNER')
PRINTEI"PL“T AGAIN?")
A=INPUTB(
UNTIL ﬂ"!
oD
RETURN

Atari Products From Cal Com
Introducing
“The’” Operating System For The XLU/XE
Line of Personal Computers
CAL COM'S OCS

Cal Com's own operating system availoble with David Young's Omniview 80 This
combination provides everything thal the Afori user could hope for, B0 column
word and data processing. compatability and a low price. Ofher oplions with
ihis systemn ore the ability 1o select basic. nol deé-selec! on power up. Also the
obility fo move the CD00 poge of Rom into Ram, giving you and addifional 4K
of memorny with Visicalke. Other funclions include the wse of the “Help” key as the
scroll control instead of Cnirl-1

Col Com's [OCS) ‘ $ 39.95
Omniview XLXE % 59.95
Also Avallable for the "XE" line of pam:ml nompuhu
Adari 4 J0XE : . 814995
Alori 52061 . . ., $599.99
35 Inch 500K Drives § cCall
Alcri 1050 Disk Drive $165.00
Happy 1050 Dvive [Compilete] $349.95
Hoppy 810 Enhancement §165.00
Happy 1050 Enhancement . $165.00
Inclus GT Drive [Afar) . ; $225.00
Ao 850 Interfoce .. 510995
US Doubler for 1050 Drive i v ... % 56,00
Star SG10 Printer §239.00
Panasonic 10949 Prinfer 5205 00
Legend BB0 Prnler. . . .,, $279.00
Alan 1020 Cosor Printet § 59.95
MPP 1D00E Modem ;i : .. 5109.95
Hayes 1200 Modem ; = e 5 . .5449.00
Volksmodem 12 . aRn $189.95
CAL COM

5295 Cameron Drive, #505 P.O. Box 2601
Buena Park, CA 90621 Silver Springs, MD 20902
(714) 994-2678 (301) 684-9121

VISAMC Accepted [Add 4%) or send Cashier's Chack or Money Order and ADD
5500 par order or shipping. Caolifomia Residents ADD 6% Soles Tox. PRICES ARE
SUBJECT TO CHANGE WITHOUT NOTICE.

CIRCLE #138 ON READER SERVICE CARD

JULY 1985 / Pﬂ_LG_E 89

