
REFERENCE MANUALS
upllw-iiiied SysLeins Software, Inc.

tiiiv

%./

GETTING STARTED WITH OS/A+ AND tiny c

CC»IGRATULATICMS ! !

!

You have purchased what we believe is one of the most sophisticated

sets of systen tools available for Atari Hone Conputers*.

This package, tiny-c with OS/A+, is designed to be run on any Atari
Computer with 48K bytes of RAM and at least one disk drive. Since
no OSS software use any routines in any cartridge, you should
REMOVE ALL CARTRIDGES.

HOW TO USE YCXJR PACKAGE

1. Check the contents of your package. You should have one diskette,
labeled "tiny c" , and two manuals, "OS/A+" and "tiny c". The bulk
of the tiny c manual was written by Tiny C Associates, but there
should be a separate appendix, the "Tiny C Installation Guide"

,

included at the end of the tiny c manual.

2. There should be a license agreement. FILL THIS OUT NOW AND RETURN
IT TO US IMMEDIATELY!! Aside frcsn its obvious purpose, the

agreenent is YOUR ticket to SUPPORT frcm OSS. Yes, we do answer
phone questions. Yes, we do respond to bug reports. BUT CMLY for

those persons who send back their license! Also, there is a

special offer for tiny-c custcxners who return their 1 icense
agreement (see below)

.

3. Turn on your disk drive(s) and screen, leaving the Atari Computer
off. Insert the OS/A+ diskette in Drive 1 and turn on the

computer. OS/A+ will boot, and you are ready to try tiny-c.

Please refer to the installation guide.

4. We STR:*JGLY urge you to IMMEDIATELY use the DUPDSK program to

obtain a working copy of your master disk. Then put your master
disk someplace safe for anergencies!

5. Sit back and enjoy a REAL computer syston.

SPECIAL OFFER ! ! !

!

For purchasers of the tiny-c package only: When you return your license
agreement, you may purchase a copy of the SOURCE AND LISTING of the

tiny-c interpreter for only $25, including shipping! ($30 outside USA,

please.) We realize that not everyone needs or wants this large (6K

bytes of object code) program, but for those experimenters, etc., who
do, this is a bargain. Please, at this price we can only accept
pre-paid orders (checks or money orders, preferably no charge cards).
[If you don't order when you send in your license agreement, you can

get it later for $5 more—you must include your agreement number with
the order.]

No order form is needed. Just write "SOURCE" in big letters on your
agreement form arx3 include the check. Two week delivery guaranteed.

tiny-c OWNER'S MANUAL

A Home Computing Software System

Thomas A. Gibson

and

Scott B. Guttiery

• tiny c associates 1978

Published by tiny c associates, Post Office Box 269,

Holmdel, New Jersey 07733- Prepared on an LSI-11 processor

running a modified version FORMAT by the Life Support System

Group, and set on a Diablo 1620. Printed by the Trenton

Printing Company, Inc., Trenton, New Jersey.

First Printing: June 1978
Second Printing: June 1979

• tiny c associates 1978

All rights reserved. Printed in the United States of

America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission
of the publishers, with the exception that the program
listings may be entered, stored, and executed in a computer
system, but they may not be reproG_..-a for 'publication.

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

The authors have taken due care in preparing this book and

the programs in it, including research, development, and
testing to ascertain their effectiveness. The authors and
tiny c associates make no expressed or implied warranty of
any kind with regard to these programs nor the supplementary
documentation in this book. In no event shall the authors or

tiny c associates be liable for incidental or consequential
damages in connection with or arising out of the furnishing,
performance or use of any of these programs.

tiny-c OWNER'S MANUAL

TABLE OF CONTENTS

ACKNOWLEDGEMENTS xi

PREFACE xiii

FOREWORD by Brian W. Kernighan xv

I. INTRODUCTION 1-1

1.1 A tiny-c Program Walk-Through 1-1

1.2 Structured Programming -- What tiny-c
Is All About 1-7

1.2.1 Compound Statements 1-8

1.2.2 Nesting Compound Statements 1-10
1.2.3 Readable Program Flow 1-12

1.2.4 Indenting and the Placement of
Brackets in Compound Statements . . . 1-13

1.2.5 Functions 1-14

1.2.6 Local and Global Variables 1-16

1.2.7 Summary — And Where We Go from Here . 1-18

II. THE LANGUAGE 2-1

2 . 1 Comments 2-1

2.2 Names 2-1

2.3 Data and Variables 2-2

2.3.1 Arrays and Array Elements 2-2

2.3.2 Locals, Globals, and Arguments 2-3

2.4 Expressions 2-5

2.4.1 Primaries 2-5
2.4.2 Operators 2-6

- iii -

tiny-c OWNER'S MANUAL

2.5 Functions 2-10

2.6 Pointers 2-14

2.7 Statements 2-17

2.8 Notes on Using the Statements 2-18

2.9 Libraries and Libraries and Libraries . . . 2-19

2.9.1 Standard Library 2-21
2.9.2 Notes on Using the Standard

Library Functions 2-25

2.10 Machine Language Interface 2-29

2.11 Computer Arithmetic 2-34

III. THE PROGRAM PREPARATION SYSTEM (PPS) 3-1

3.1 Fundamentals of PPS 3-1

3.2 Entering Text Lines 3-3

3.3 The PPS Commands 3-3

3.4 Notes on Using PPS 3-6

3.4.1 Bumping the Top and Bottom 3-6
3.4.2 Deleting 3-7
3.4.3 Line Numbers 3-7
3.4.4 Using Locate and Change 3-7

3.5 Errors 3-9

3.6 Sample Session with PPS 3-11

IV. tiny-c PROGRAM EXAMPLES 4-1

4.1 Optional Library Functions 4-1

4.1.1 tiny-c Code for the Optional Library . . 4-2
4.1.2 Comments on Style 4-4

- iv -

tiny-c OWNER'S MANUAL

4.2 Piranha Fish — An Original Game 4-5

4.2.1 Facts 4-6
4.2.2 Piranha Fish Code 4-9
4.2.3 Comments on Style 4-17

4.3 The Standard Library and PPS 4-17

4.3.1 Program Preparation System Code . . . 4-18
4.3.2 Comments on Style 4-30
4.3.3 The Use of MC 11 4-30

4.4 Morse Code Generator 4-31

4.4.1 Comments on Style 4-34

4.5 A Tape-to-Printer Copy Utility 4-34

4.6 TV Graphics Functions 4-35

4.6.1 Meteor Shower 4-36

Anpendix

:

OSS installation f'uir'p ''or At=iri version of "^iny C

IG-1 thru T3-«

- V -

ACKNOWLEDGMENTS

We are indebted to many friends and tiny-c users. Their
response to tiny-c, both complimentary and critical, has
helped us improve and extend the product.

The tiny-c installers -- Lou Katz, Dennis O'Neill, Jim
Goodnow, Dale Walker, Morris Krieger, and Ira Ellenbogen
have enabled us to spread the tiny-c gospel to territories
we could not have explored alone. We thank them for their
missionary zeal

.

Most of all, we would like to thank Irene Gibson and Maria
Nekam for their continuing efforts, patience and
encouragement. Without their dedication to the daily
responsibilities of a mail-order business, this enterprise
would not be possible.

The amount of toil that an idea can absorb from its
inception to its realization continues to astonish us all.

Thomas A. Gibson
Scott B. Guthery

May 1979

tiny-c OWNER'S MANUAL

tiny-c OWNER'S MANUAL

PREFACE

The sources of ideas that went into tiny-c are many. First
there is BASIC [Kemeny & Kurtz 196?]. BASIC has become the

de facto standard training language in the United States. It

is popular in high schools, universities, even in industry,
where it is used for some production work. Although BASIC
has its faults, its one big strength is that it is easy to
learn. This is largely because it offers a single computing
environment. You can enter new program lines, change old
ones, and start a program running all from one command
environment. You do not have to remember the environment you
are in, i.e., edit mode, compile mode, link mode, system
mode, run mode, etc., when giving a command. There are no

commands to shift from mode to mode. There are no
relocatable object modules, link editors, and all the other
paraphernalia of "real" computers. It is very simple and
very adequate. Thus a focus is made on the essential
elements of computing, as opposed to the elements of
"wrestling" with a computer.

The LOGO language [Feurzeig 1975] is in many ways similar to

tiny-c. It offers a well-structured language based on BASIC,
as well as a single environment for programming and
execution. LOGO was used experimentally in public schools
with very young children. The experiment showed that
children could grasp simple computer concepts and work
through a prepared set of exercises, and then do creative
work of their own.

C [Ritchie, Kernighan, & Lesk 1975] is a computer language
designed by Dennis Ritchie, at Bell Telephone Laboratories,
tiny-c borrows its overall structure from C. C is broadly
used in universities and in industry. It has been used to

program a very advanced and powerful computer operating
system, called UNIX" [Ritchie & Thompson 1974]. And yet it

* UNIX is a trademark of Bell Laboratories.

tiny-c OWNER'S MANUAL

is a very simple language. C has no native input/output,
e.g., read or print statements. Input/output is done using
functions. Thus C concentrates on COMPUTING facilities, and
allows external development or elaborations of input/output,
tiny-c has adopted this idea.

The command environment for tiny-c is written in tiny-c. It

needs no translation to the micro-processor's machine
language. This corresponds somewhat to the idea of using C

as the programming language to implement UNIX. So, although
intended as a training language for structured programming,
tiny-c is a powerful language.

The tiny-c OWNER'S MANUAL is trying to reach four audiences
at the same time. For those new to structured programming we

have a brief tutorial and program walk-through so they can
get the gist of it without getting bogged down in details.
Experienced users of structured programming will find that
the reference sections let them quickly discover the
features of tiny-c. For those who want to know how the
tiny-c interpreter works, we have described its operation.
And, finally, for those who want to install tiny-c on their
home computer, we have included a complete installation
guide

.

NOTES ON THE SECOND PRINTING: Several factual and

clarification edits have been made in the text for this
printing. The only major change is to Appendices A, B and C,

where all the fixes in Newsletters 1 and' 2 have been
incorporated

.

In Appendix A (8080), several "housekeeping" changes have
been made. These include assembler calculated space
allocations (BSTACK, ESTACK, etc.) and incorporation of
patches XXI through XX8 in line. This new version is labeled
§0-01-02. A program to relocate 80-01-02 analogous to the

Relocate Program in Chapter VI for 80-01-01 is also included
in Appendix A.

The PDP-11 version of tiny-c has been derived from the
compilation of the tiny-c interpreter written in the C

programming language. This rendering of tiny-c in its big

brother is also included in Appendix B.

- xiv -

tiny-c OWNER'S MANUAL

FOREWORD

C is a versatile, expressive general-purpose programming
language which offers economy of expression, modern control
flow and data structures, and a rich set of operators. C is
not a "very high level" language, nor a "big" one, nor is it
specialized to any particular area of application. But its
absence of restrictions and its generality make it
remarkably convenient and effective for a wide variety of
computing tasks.

C is concise — you don't have to write a lot to get a job
done. Yet at the same time, C programs are readable -- you
can understand what you (or someone else) have written. This
combination of brevity and readability is rare in

programming languages, and is part of the reason that C is
so widely used.

With tiny-c, Tom Gibson and Scott Guthery have designed a

stripped-down version of C that is well-adapted to the
microcomputer environment. tiny-c retains C's
expressiveness, conciseness and readability, yet sacrifices
very few of its features.

At the same time, tiny-c provides a computing environment
that will make it easier to develop programs. It comes with
an editor and other piece parts that together make a program
preparation system.

The tiny-c OWNER'S MANUAL is more than a reference manual
for tiny-c, however. It is also a vehicle for conveying
ideas and insights about how to get the most out of your
machine, and about good programming in general.

- XV -

tiny-c OWNER'S MANUAL

C has simply taken over in many computing environments, not
because people have been ordered to use it, but because it
is a good language. It seems very likely that tiny-c will
have a similar effect in the microcomputer world.

Brian W. Kernighan
Bell Laboratories

Murray Hill, New Jersey

May 9, 1978

- xvi -

Version 1.01 PAGE 1- 1

I. INTRODUCTION

What is tiny-c? tiny-c is

a language, plus
a standard library, plus
a program preparation system.

Without any other software aids, you can prepare tiny-c
programs, run them, edit them, store them on a cassette or

floppy disk, and read them back later.

tiny-c is a structured programming language which has
if-then-else ,

while-loops, functions, global and local
variables, and character and integer data types, pointers,
and arrays.

tiny-c is independent of operating systems. You can
interface it easily to the input/output routines on your
computer

.

tiny-c can invoke your own machine language subroutines so

the tiny-c programming language can be fitted to your system
and your system can be reflected in and extend the language.

1.1 A tiny-c Program Walk-Through

Figure 1-1 is a complete tiny-c program consisting of two
functions

.

PAGE 1- 2 tiny-c OWNER'S MANUAL

FIGURE 1-1

/guess a number between 1 and 100
/* T. A. Gibson, 11/29/76

guessnum [

int guess, number
number = random (1,100)
pi "guess a number between 1 and 100"
pi "type in your guess now"
while (guess != number) [

guess = gn
if (guess == number) pi "right !!"
if (guess > number) pi "too high"
if (guess < number) pi "too low"
pi""; pi""

] /* end of game loop
] /* end of program

/*
/* random-generates a random number

int seed, last /* globals used by random
random int little, big [

int range
if (seed == 0) seed = last = 99
range = big - little + 1

last = last * seed
if (last < 0) last = -last
return little + (last/8) % range

]

End of FIGURE 1-1

How does this program work? Let's do a program walk-through:

Starting at the top, the first two lines are COMMENTS. A
comment starts with /* and goes to the end of the line.

Version 1.01 PAGE 1- 3

"guessnum" is the name of a FUNCTION which is called to
start the program.

Following "guessnum" is a COMPOUND STATEMENT, which is 12

lines long, the last line being:

] /* end of program

A compound statement is everything between balanced
left-right brackets.

The first SIMPLE STATEMENT in guessnum is:

int guess, number

This declares two INTEGER VARIABLES named "guess" and
"number". All variables in tiny-c must be declared. When
executed, the int statement will create the variables, and
give them an initial value of zero.

The second simple statement in guessnum is

number = random (1,100)

This sets number equal to the value of the tiny-c program
function random executed with its first ARGUMENT equal to 1

and its second argument equal to 100. In our program the
function random returns a random number between 1 and 100.

On the next line, pi is a tiny-c LIBRARY FUNCTION which
prints a line. It prints the quoted STRING which is its
argument.

while sets up a LOOP. The general form of while is:

while (expression) statement

In this instance, the EXPRESSION part is

guess != number

where != means not equal to. This expression is evaluated,
and if it is true, the statement is done, and then the
expression is evaluated again. If it is false, the statement
is skipped. Initially, guess is and number cannot be less
than 1, so the expression is initially true. Therefore the
statement is executed.

PAGE 1- 4 tiny-c OWNER'S MANUAL

The statement is compound, and is composed of six simple
statements. The first of these statements is

guess = gn

gn, which stands for "get number", is another standard
library function. It reads a number typed in by the user at
the terminal, and returns that value. So here the program
waits until the user types a number and a carriage return,
and then guess is assigned the number typed.

The next three simple statements are if statements. The
general form of the if statement used here is

if (expression) statement

where statement is executed if expression is true.

Statements five and six of the while's compound statement
are pi"", pi"" goes to a new line, and prints nothing. The
semicolon allows you to write more than one simple statement
on the same program line. So

pi""
;
pi""

prints two blank lines.

Now we are at the end of the while loop. Since the
expression part of the while was true, the while statement
is executed again. This starts with another evaluation of
the expression to see if it is true or false. If the first
guess is not equal to number, the compound statement is
executed again. Another guess is read, the appropriate
remark is made, and two more blank lines are printed; the
while is done yet again. Eventually the user gets the right
number and guess is equal to number. This will cause a

"right!!" and two blank lines to be printed. The while
condition is then tested again. The expression guess !=

number is evaluated and found to be false, so the entire
compound statement part of the while is skipped, which
brings us to the end of guessnum. The game is over. The
program stops because the end (the last]) of guessnum is
reached

.

Before we walk through random, notice the integers seed and
last are declared outside of both guessnum and random. They
are called GLOBAL VARIABLES. They will be created once when
the program is started. They are initially zero, and are

Version 1.01 PAGE 1- 5

known and usable by both guessnum and random. On the other

hand, guess, number and range are LOCAL VARIABLES, guess and

number are known and usable only within guessnum, while
range is local to random.

The first line of random gives the function name. And,

before the [, it declares two integer arguments, little and

big. A VALUE must be supplied for each argument when a

function is called. The call in the sixth line of guessnum
sets little to 1, and big to 100. Now we enter the BODY of

the function random.

range is declared an integer and is initially zero. On the

first call, seed is zero. Now seed and last are both set to

99. range is calculated, and is 100. last is set to the

product of last and seed which is 9801. This is not less

than 0, so the statement part of the if is not evaluated.

We next come to the return statement. It does two things.

First, it evaluates the expression. The result is made the

VALUE OF THE FUNCTION. Second, it returns control to the

program that called the function, tiny-c expressions are

similar to algebraic expressions. The symbol + means add, /

means divide, and - means subtract (or take the negative).
To indicate multiplication, a * is used. An unusual symbol

is %, which means divide the left side by the right side and

take the REMAINDER (not the quotient). So, for example,

1225 % 100

is 25.

Thus the return statement calculates the expression:

little + (last/8) % range

= 1 + (9801/8) remainder 100

= 1 + 1225 remainder 100

r 1 + 25

= 26

The value 26 is returned as the value of function random. It

also leaves 9801 in last, and 99 in seed. Since these are

PAGE 1- 6 tiny-c OWNER'S MANUAL

global variables, their values are retained between function
calls. This is not true of local variables like range. Their
values are retained only during the execution of the
function in which they are defined. When that function is
left their values are lost.

On a second call to random, range is recreated, and
reinitialized to zero, seed is not zero, so seed and last
are not set to 99, but remain 99 and 9801 respectively,
range is recalculated as 100. Then

last = last * seed
= 9801 » 99
= 970299

This number is too big for tiny-c. Any computer has a limit
on the size of the numbers that can be computed, tiny-c
numbers must be in the range

-32768 <= number <= 32767.

last OVERFLOWS this range. It will be assigned the value
-12741! (We explain this more completely in Section 2.11.)
This is less than 0, so the next statement assigns last the
value 12741. Then the return statement calculates:

1 + (12741/8) remainder 100
= 1 + 1592 remainder 100
= 93

This is returned as the second value of random.

REVIEW OF THE WALK-THROUGH

The purpose of the walk-through is to get a feeling for
programming in tiny-c. We have seen that

* A tiny-c program is a set of functions.

* Some functions are standard library
functions, like gn and pi.

* Global variables stay around and hold
their values. Local variables come
and go.

Version 1.01 PAGE 1- 7

* Function and variable names can be as
long as you want.

* A group of statements enclosed in

brackets makes a compound statement
which can be treated just like a simple
statement.

1.2 Structured Programming — What tiny-c Is All About

Perhaps you have heard structured programming described as

"go-to-less" programming. Or programming with just

if- then-else and do-while control statements. Such remarks

oversimplify what structured programming is all about. The

essence of structured programming is PROGRAM CLARITY. You

can write programs in small, modular parts, with

easy-to-follow program flow. You can use well-chosen,

descriptive variable names. This leads to clear,

understandable programs. Program clarity is what structured

programming is all about.

We discuss here four principle ideas that make program

clarity possible. These are: modularity, predictable program

flow, local variables, and the simple idea of meaningful
variable names.

MODULARITY in software is just as important as modularity in

hardware. It makes it humanly possible to deal with

complexity. A module is a brick or atom used for building

bigger modules. Seen from within, a module may be very

complex but from the outside it is an indivisible whole.

Software modularity is achieved through the use of

FUNCTIONS.

PROGRAM FLOW is predictable if you can point to any

statement and easily answer the question "under what

conditions is this statement executed?" This is particularly

important if the program is 20 or 30 pages long, and still

has bugs. Scanning the whole program and drawing arrows is

no fair. That's not considered an easy way to answer the

question. Predictable program flow can be achieved in many

ways. In tiny-c, it is done with COMPOUND STATEMENTS.

PAGE 1- 8 tiny-c OWNER'S MANUAL

Functions also make it possible to hide variables used in a
strictly local context. The variable n is very popular; it's
used frequently to count things. Have you ever had a program
blow up because you were using n in two places for two
purposes? The fix was to change one of them to n1. A better
idea is in the concept of LOCAL and GLOBAL variables.

As for long, MEANINGFUL NAMES for variables and functions —
just look at the sample programs to see the improvement.

David Gries suggests structured programming be called
"simplicity theory", and characterizes it as "an approach to
understanding the complete programming process" [Gries
1974]. As a pleasant dividend, structured programming is
more enjoyable than monolithic programming. It should
certainly, therefore, be a part of personal computing. To
begin our look at tiny-c as a structured programming
language, let's look at the foundation of functions and
predictable program flow — the compound statement.

1.2.1 Compound Statements

When you write a program, you write a list of statements:

X = x-1
a = b+c
b = b»2-c
x = b-a

The idea behind a compound statement is to make one
statement -- a molecule — out of a set of statements —
some atoms. This is done in tiny-c by

[x = x-1
a - b+c
b = b*2-c
X = b-a]

Anywhere you can write a simple statement you can also write
a compound statement. This sounds simple, but the effect is
powerful. For example most programming languages have an if
statement similar to this:

if (logical expression) statement

Version 1.01 PAGE 1- 9

So you can write

if (x>0) X = x-1

But make the statement part compound, and you have this
capability

:

if (x>0) [

b = b*2-c
a = b+c
X = x-1

]

This multiline if is not some special kind of if. It is
still

:

if (logical expression) statement

But the statement part is compound. The compound statement
is treated as an indivisible unit. It is either all done or

all not done depending on the value of the logical
expression

.

The compound statement also is a natural for LOOPS. There is
a big difference among the various programming languages in

how you write loops, but they all have one thing in common.
A loop has a beginning and an end. A compound statement can
be used to express this. The looping statement is:

while (logical expression) statement

Notice the similarity with the if. Only the keyword has
changed. Here's how while works. The logical expression is
evaluated. If it is true, then the statement is executed,
and then the while is done again. The effect is a repeated
if, i.e., a loop. As long as the logical expression remains
true, the statement is done again and again. Eventually
something in the statement causes the logical expression to

become false, and the loop terminates. Of course, the
statement can be compound, as in:

while (x>0) [

a = b+c
b = b*2-c
x = x-1

]

PAGE 1-10 tiny-c OWNER'S MANUAL

The compound statement is a natural way to delimit the
beginning and end of loops.

With one simple idea, the compound statement, two things are
achieved. The if statement is more powerful than is common
in non-structured programming languages. The concept of a
loop collapses to a simple repeated if or while statement.
In both situations you are stating conditions under which
the statement — whether simple or compound — is to be
executed

.

1.2.2 Nesting Compound Statements

ANYWHERE YOU CAN WRITE
A SIMPLE STATEMENT, YOU
CAN WRITE A COMPOUND
STATEMENT.

That is a fundamental rule. A compound statement contains
simple statements. Therefore a compound statement can
contain compound statements. Figure 1-2 illustrates this.

Version 1.01 PAGE 1-11

FIGURE 1-2

X :: X-1
a :: b+C
b :: b»2-a
X :: b-a

]

a=b+c is a simple state-
ment. The rule says a

compound statement can
be written here. For
example

:

[X = x-1
[a=b+c

w = y+2*x+w
y = 17

]

b = b»2-a
X = b-a

]

End of FIGURE 1-2

The' substitution of a compound for a simple shown in Figure
1-2 is certainly allowable, but is of no practical value.

The real utility in nested compounds is in writing nested if
and while statements. Figure 1-3 is therefore a more
realistic example of the use of compound statements.

PAGE 1-12 tiny-c OWNER'S MANUAL

FIGURE 1-3

if (x>0) [

while (x< limit) [

if (case==l) [

y = 0; w = 99

]

if (case==2) [

y = 99; w =

]

nextaction
X = x+1

]

]

End of FIGURE 1-3

In Figure 1-3, if you remove everything except the brackets,
you have this:

[[[][]]]
This is what is meant by v...'^-.^ compound statements.
Brackets are used to form p.^^^gram units the same way
parentheses are used to create arithmetic statements. The
main difference is that a pair of brackets is preceded by a
function name, or a logical expression. In the first case
you're naming the contents of the brackets and in the second
you're stating the conditions under which the contents are
to be executed.

1.2.3 Readable Program Flow

In Figure 1-3, look at the "y=0" in the fourth line. How can
it be reached? Only if case is 1, and x is less than limit.
No go-to can lead here, either accidentally or on purpose.

How can "nextaction" be reached? Only if x is less than
limit, and then only after possible changes to y and w. This

Version 1.01 PAGE 1-13

program has simple, predictable flow. The only way a

statement other than a while can be reached is from directly

above, whiles can also be reached from their matching]

below

.

1.2.4 Indenting and the Placement of Brackets in Compound
Statements

The brackets alone define the "structure" of a program.
Indenting means nothing. But one of the purposes of

structured programming is to make programs more readable

and, hence, more understandable. A good choice of indenting
style is very important to program readability. There are

several styles to choose from. The actual choice is not too

important. But once you choose a style, stick to it.

Consistency IS important.

One easily explained style is to align matching brackets
vertically. This looks like:

if (x<0)
[statement

statement
II

II

II

]

A problem with this is that when editing the first

st^atement, care must be taken to keep the [intact. So some

use this style:

if (x<0)

[

statement
statement

n

It

II

]

PAGE 1-14 tiny-c OWNER'S MANUAL

This takes an extra line. Also there is a visual break
between the if and its statements. So some take the left
bracket and move it to the end of the preceding line:

if (x<0) [

statement
statement

n

n

]

The right bracket is now vertically aligned with the if or
while that preceded the compound statement.

You may pick one of these, or invent a style of your own.
But, we repeat, whatever you decide to do, do it
consistently

.

1.2.5 Functions

A large software project can usually be broken into natural
parts, and each part programmed and debugged as a separate
unit. Each of these units then becomes a reliable building
block for the construction of still larger parts of the
project. Sometimes units can be designed to be useful in
many projects.

In various programming languages these building blocks are
called subprograms, subroutines, or, as in tiny-c,
FUNCTIONS. Here is a tiny-c function for any computer versus
human game:

game [

getready
while (stillplaying ()) [

humanturn
if (stillplaying ()) computerturn

]

gameover
]

Version 1.01 PAGE 1-15

The name of the function is "game". The compound statement
that follows is called the body of the function. Each [can
be read as "do all of this", and its matching] read as "end
of this", game divides the design of a game program into
five parts:

getready (which initializes things, and
prints instructions if
requested)

,

stillplaying (which determines if the
game is still going, and
returns true if it is, other-
wise false)

,

humanturn (which conducts the human's
turn)

,

computerturn (which conducts the com-
puter ' s turn)

,

gameover (which computes and prints
scores, makes remarks about
the human's skill, promotes
the human, or whatever).

The game function is the first step in divide-and-conquer or
top-down program development. Let's carry this development
one step further. The getready function can be expanded this
way

:

getready [

ps "Do you want instructions?"
if (gc()=='y') instructions
setupboard

]

getready divides the initialization into two parts:
instructions, and setupboard.

(Note:*ps prints a character string, gc() reads a character,
and == 'y' tests if the character is a y.)

Notice that both game and getready are universal. They can
be used in many game programs. Programming in this fashion
eventually leads to a library of useful, general purpose

PAGE 1-16 tiny-c OWNER'S MANUAL

functions. These can be pulled off the shelf into a software
project. You know they work because they were used before.
Your programming becomes more productive, and more pleasant.

The next time you're programming a sizable project, i.e.,
anything more than a page, try to identify subsets of the
logic usable in other projects. Capture these as functions.
It is gratifying to discover a general purpose function
where none was suspected.

1.2.6 Local and Global Variables

A LOCAL VARIABLE is one that is known only inside a
function. It can be used and changed only within the body of
the function. Even its name is unknown outside the function.
In fact, its name can be used in other functions without
conflict. This is what makes local variables useful.

Take a look at Figure 1-4. There are four local variables in
these two functions. The variables n and maximum are local
to afunction. The variables n and total are local to
anotherfunction . If either of these functions calls the
other, the values of n will not be confused since they only
have meaning inside the body of their own functions. It
helps to think of local variable names as being preceded by
the possessive form of the function to which they are local.
For example, afunction's n and anotherfunction ' s n.

Version 1.01 PAGE 1-17

FIGURE 1-4

afunction [

int n, maximum
n=0
while (n<maximum) [

n=n+l
]

]

another function [

int n, total

n = n+2
total = total+n

]

End of FIGURE 1-4

The value of locals is obvious to anyone who has spent a

nasty debugging session trying to find out where, in a huge
program, some variable is getting changed.

Of course not all variables can be local. Some must be

shared by many functions. These are called GLOBALS. They

should be used infrequently, as they do cause debugging

headaches. Choosing good, descriptive names for globals

alleviates the problem, . A global named "k" is inviting

disaster. Call it "klingonsleft" and you're less likely to

accidentally use it for two purposes. Also you've given a

reader of your program a pretty good clue to the variable's

use

.

PAGE 1-18 tiny-c OWNER'S MANUAL

1.2.7 Summary — And Where We Go from Here

We've walked through a simple program to get a feel for
tiny-c, and we've discussed the virtues of structured
programming. These are just the preliminaries. Now it's time
for the main events. First, a complete definition of the
tiny-c language. Chapter II is devoted to this task. To
prepare programs you need an editor and a way of debugging.
The Program Preparation System (PPS) is described in Chapter
III. Examples are excellent learning tools: Chapter IV has
several sample programs. Maybe you want to make it bigger,
better, or faster? Chapter V explains how tiny-c works.
Finally, of course, you'll want to get tiny-c up and running
on your own computer. Chapters VI and VII explain how to
install tiny-c on an 8O8O or PDP-II".

" PDP is a trademark of Digital Equipment Corporation.

Version 1.01 PAGE 2- 1

II. THE LANGUAGE

The tiny-c programming language is described completely here.

2 . 1 Comments

Comments begin with /* and continue to the end of the line.
Apostrophes ('), quotes ("), and brackets ([]) should not be

used in comments.

2.2 Names

Names of functions and variables can be one or more
characters long. If more than eight characters are used,

only the first seven and the last are significant. The first
character must be alphabetic, either upper or lower case.

The rest must be alphanumeric. Names cannot have imbedded

blanks. Upper and lower case are considered distinct, so

GUESS
guess

are different names.

Names may NOT begin with any of these:

if
else
while
return
break
char
int
MC

PAGE 2- 2 tiny-c OWNER'S MANUAL

2.3 Data and Variables

There are two kinds of data, integers and characters. A
DATUM is an actual value:

7 is an integer datum
'a' is a character datum

A VARIABLE is a named cell that holds one datum. A variable
must be created by declaring its existence and the type of
datum it can hold in an int or char statement. For example,
the two tiny-c statements

int a,b
char letter

declare the existence of three variables; two integer
variables named a and b and one character variable named
letter. Each can hold one datum of its respective type.
Initially, integers are and characters are ASCII null,
i.e., also .

2.3.1 Arrays and Array Elements

An ARRAY is a list of variables of the same type.

int value (10

)

char buffer (80)

declares an array with eleven integer elements, and a
character array with 81 elements.

An array element is picked out using a subscript. For
example

,

value(7)

names the seventh element of the array value. Every array
has a zero-th element

value()

and a last element

value(10)

.

Version 1.01 PAGE 2- 3

rfhen you declare an array, you name its last element. Thus,
value has eleven elements:

value(O), valued), value(IO)

The subscript of an array can be any expression.

valued + 10 » k)

Even in a declaration, the subscript can be an expression.
This is a convenient way of setting several arrays to the
same or related sizes.

int size
size = 10
int x(size), y(size), matrix (size*size

)

Note that matrix is NOT a two-dimensional array, but a

single list of 101 elements. However, it can be addressed as
a two-dimensional (0-9, 0-9) matrix this way:

int row, col
row = 7

col = 3
matrix(row + size * col) = ...

2.3.2 Locals, Globals, and Arguments

There are three scopes of variable declarations.

Locals: Local variables are declared within the
body of a function (i.e., inside the []
part of the function.)

Arguments: Function argument variables are declared
after a function name, and before the [

beginning the function body.

Globals: Global variables are declared outside all
functions

.

In Figure 1-1, guess, number and range are local variables.
The first two, guess and number, are local to the function

PAGE 2- 4 tiny-c OWNER'S MANUAL

guessnura. The last, range, is local to the function random.
The variables little and big are arguments. The variables
seed and last are globals as are the function names guessnum
and random.

Locals are created when a function is entered, and destroyed
when the function is exited. When they are created they are
also set to 0, (ASCII null, for characters).

Function arguments are always copied into a function, and
then treated as locals.

Global variables may be accessed by all functions and
preserve their values between function calls.

Within a function, the following names can be used:

locals for the function,
arguments of the function,
all globals for the program, and
all functions for the program.

Technically, arguments are locals, and function names are
globals, so this rule is easier to remember as:

A FUNCTION CAN USE
ITS OWN LOCALS, AND
ALL GLOBALS.

All the locals within a function must have different names.
But two different functions can each have their own local
variable named x, and the two x's are kept separate.

All global names including function names must be different.

Duplicate names are not detected or diagnosed. A program
will execute, but the second declaration of the name will be
ignored. The first declared name is always used.

One form of duplication is important. You can have a local
and global variable of the same name. They are kept
separate. Within the function that has the local, the local
name prevails. Elsewhere, the global prevails.

Version 1.01 PAGE 2- 5

2.4 Expressions

Expressions are formed from operators, parentheses, and

primaries. They are used to calculate and store data, and to

invoke functions.

2.4.1 Primaries

Primaries designate the data and/or destinations for results

of expressions. They are the atomic elements of expressions.

There are six types of primaries:

primaries examples

constants

strings

variables

subscripted
variables

array names

functions

10, 'c'

"hello"

X

buff (7)

buff

gn, ps "hello"

An integer constant may be signed. Its value must be between

-32768 and 32767, inclusive. An integer uses two bytes of

storage

.

A character constant is always ericlosed in apostrophes. A

character uses one byte of storage.

Integers and characters are completely interchangeable in

expressions. A character variable may be used as a one-byte

integer whose value is in the range -128 to 127- This is

occasionally useful, as in:

PAGE 2- 6 tiny-c OWNER'S MANUAL

char newline, ch, digit
newline = 10 /* Puts an LF in new line,
ch = getchar
digit = ch - '0' /* Converts an ASCII digit to

/* its integer value.

A character string constant is technically a two-byte
constant which has as its value the address of the first
element of an array of characters. Thus,

"hello"

is the address of the first element of an array of six
characters initialized with h-e-l-l-o-null . Two-byte
constants or variables which may also be used as addresses
are called pointers. Thus, a character string is a pointer
to its first character. Pointers are covered in detail
later

.

A subscript expression may be an arbitrary expression. The
smallest subscript is 0, the largest is the declared size of
the array. If an array's subscript falls outside these
bounds, a subscript error is re~' ".^ed. An exception to
this rule is when an array is deal-:- ^ith size 0. Then any
positive or negative subscript .i used. In effect, such
an array can access any element in one direct address space
of the computer.

Since function names have values, they may be used in
expressions as though they were variable names. The value of
a function name is the value returned by the function
program of that name. In Figure 1-1, the use of the function
name random

number = random(
1 , 1 00

)

is an example of the use of a function name as a variable.

2.4.2 Operators

The tiny-c operators are used to do arithmetic, compare
values, and assign values to variables. We first show their

Version 1.01 PAGE 2- 7

use in simple circumstances using one or two primaries. Then

we consider more complex uses.

OPERATOR USE DEFINITIONS

unary + +a

unary - -a

a»b

a/b

a5tb

a+b

a-b

a<b

a>b

When used alone to the left of a

variable, the plus sign is called
a unary plus. It has no effect, and

is used sometimes for readability.

When used alone to the left of a

variable, the minus sign is called
a unary minus. The value of -a is

the negative of a.

Multiplication

.

multiplied by b

The value is a

Division. The value is a divided
by b. If there is a fraction, it

is discarded, so the result is

an integer. So 7/2 is 3- Also
-7/2 is -3.

Remainder. The value is the
remainder of a/b. So 7%2 is 1.

Also -1%2 is -1

.

Addition. Also called plus or

binary plus. The value is the

sum of a and b.

Subtraction. Also called minus
or binary minus. The value is

the difference between a and b.

Less than. The value is 1 if a

is arithmetically less than b.

Otherwise it is 0.

Greater than. The value is 1 if

a is arithmetically greater than

b. Otherwise it is 0.

PAGE 2- 8 tiny-c OWNER'S MANUAL

OPERATOR USE DEFINITIONS

<= a <= b Less than or equal to. The value
is 1 if a is less than or equal
to b. Otherwise it isO.

>= a >= b Greater than or equal to. The value
is 1 if a is greater than or equal
to b. Otherwise it is 0.

== a == b Equal to. The value is 1 if a and
b are equal. Otherwise it is 0.

!= a != b Not equal to. The value is 1 if a
and b are not equal. Otherwise it
is 0.

= a=b Assignment. a is assigned the
value b. Then the expression a=b
assumes the value of b.

USES OF ASSIGNMENT: The assignment operator = can be
used anywhere a binary + or - can be used. For
example

,

x(k=k+1) = a-(b=c/d)

performs three assignments, b is set to the value
of c/d. k is set to k+1 . The array element x (new
value of k) is set to a minus new value of b. Also
consider

a = b = c =

c is set to 0. Then b is set to c, i.e., to 0.
Then a is set to b, also 0.

ORDER OF EVALUATION: When you write expressions with
3 or more primaries, the order of evaluation
becomes important. For example, is

9 + 6/3

Version 1.01 PAGE 2- 9

equal to 5 or 11? Standard algebra conventions
would do the division first, then the addition. So

the answer is 11. tiny-c works the same way. All
the operators are assigned a PRECEDENCE. In the
absence of parentheses, the operators with the
highest precedence are done first.

precedence operators

highest unary + unary -

* / %
+ -

<><=>= == !=

lowest =

So the value of

7+3<5 is (7+3X5 is [not 8].

-1+7 is (-1)+7 is 6 [not -8].

a = 1+c = 2 is a = (1+c) = 2 is illegal,
since you may not set an expression,
1+c, to anything.

But

a = 1+(c=2) sets c to 2 and a to 3-

a = 1+c == 2 is a = ((1+c) == 2) which
sets a to 1 if 1+c is 2; otherwise
sets a to 0.

All the above cases are resolved by the precedence
rule, but sometimes that is not enough. For
example, is

7-2+1
equal to 4 or 6? Standard algebra would say 6.

Note that + and - have the same precedence, so we

cannot use precedence to determine which goes

PAGE 2-10 tiny-c OWNER'S MANUAL

first. The tiny-c convention is that the
evaluation is done left to right. So,

7-2+1 = (7-2)+1 = 6.

7/2*2 = (7/2)»2 = 6. [Remember 7/2 is 3.]

But what about

a = b = c =

This is the exception. A series of assignments
is done right to left.

USE OF PARENTHESES: Parentheses are used to change the
order of performing operations. So in our very
first example, if the desired result was 5, you
can write it

(9+6)/3

An expression within parentheses is evaluated and
then this value is used with operators outside the
parentheses. Within parentheses, precedence and
grouping rules determine order. So

22/(9+6/3) is 22/11 is 2 [not 4]

because the precedence rule says 9 + 6/3 is 11.

2.5 Functions

A function can be used as a primary anywhere in an
expression (except to the left of an assignment.) When a
function is used in an expression, we say the function is
CALLED. When you call a function, it must be defined
somewhere in your program, be in the standard library, or be
the special function MC.

Every function is defined with a specific number of
arguments, random has two arguments, little and big. When a
function is called, values must be supplied for each of the

Version 1.01 PAGE 2-11

function's arguments. If you supply too many or too few

values, an arguments error is recognized. Thus, for example,

random must always be called with two arguments, ps must

always be called with one, and gn must always be called with

none

.

The argument values are written as a list of expressions
separated by commas. The list, even if empty, can always be

enclosed in parentheses, and sometimes must be. Arguments
themselves may invoke functions. Arguments are evaluated
left to right. Here are some legal calls on random.

random (1, 100)
random (gn () ,

gn()

)

random (k = random (-10,10), k+10)

Notice each call to random has two arguments, because random

is defined with two arguments.

If an argument is an array, then the supplied value must be

a pointer of the same data type. For example, the argument
to the library function pi is a character array. So a

character pointer is the only valid argument.

pi "hello"

is valid, because "hello" is a character pointer to a string
initialized with h-e-l-l-o-null . Other cases of pointer
values are described in Section 2.6.

If an argument is not an array, then ANY value can be

supplied. But usually it will not be a pointer. Neither

argument to random is an array. So the supplied values may
be of any type.

random 1 , 100

returns a number between 1 and 100.

random 'a' ,
'
z'

returns a random lower case letter.

char a(100)
random a,a+100

PAGE 2-12 tiny-c OWNER'S MANUAL

returns a random address within a. Of course, this rule also
applies to function definitions which are included in a
tiny-c program. In the following example, the function len
has one array argument and one non-array argument:

char a (10)
int k,l
k = len (a,l) /* a is a pointer

/* definition of len function
len

char string (10) /* string is an array
int n /* n is not an array

Parentheses around the argument list are always allowed,
tiny-c allows them to be removed in certain cases. This is
done principally to make input/output functions more
legible. In the following forms, omitting parentheses around
arguments is allowed.

k = function arg
,
arg

,
arg

k = function

function arg, arg, arg

function

The general rule is:

IF A FUNCTION AND ITS
ARGUMENTS ARE THE LAST
PART OF AN EXPRESSION,
ITS PARENTHESES MAY BE
OMITTED.

Version 1.01 PAGE 2-13

Whenever the function is involved in a more complex
expression, parentheses must be used. For example

number = gn

is allowed, but gn in the expression

number = (gn () + 10)/2

needs the parentheses as shown.

There is no problem with complicated function arguments
without parentheses. So this

pn 7 + 11/w - 142/g - x/17 + x5642

will print a number.

If the first argument begins with (, the argument list must
be enclosed in parentheses. For example:

pn (7+2)/3

will do this:

a) determine that (7+2) is the argument to pn

,

b) call pn , which prints a 9,
c) pn returns a as its value,
d) 0/3 is evaluated, and the result discarded.

This is probably not what was desired. To print the value of
7+2 divided by 3 you should write

pn ((7+2)/3)

When a function is invoked with arguments, the value of each
argument is passed to the function. A local copy is made
within the function. The function can change the local copy,
but this will not change the original.

PAGE 2-14 tiny-c OWNER'S MANUAL

For example

X = 10
blast X
pn X

blast int x- [

X = 9999
]

The pn will print a 10. blast changes its local copy of x

but not the "original" one.

2.6 Pointers

A pointer is a memory address. A pointer variable is a

variable whose value is an address. And a pointer expression
is an expression whose value is an address.

We have seen that

char x(3)

declares a list of four character variables. They have names
x(0), x(1), x(2), and x(3). In addition, it declares a

pointer variable named x, and initializes it with the
address of x(0). It is easy to visualize this way:

x(0) x(3)

The arrow from x to x(0) indicates that the value in x is

the address of x(0).

Version 1.01 PAGE 2-15

A pointer expression is a pointer plus or minus an integer
expression. A simple case is x+1, which points to x(1). A

pointer variable can be assigned a new value. For example,

X = x+

1

results in:

x(0) x(1) x(3)

Or

:

char buffer(80), pointer(O)
pointer = buffer

buffer

pointer

buffer(O) • • • buffer(80)

A character string is a pointer to an array initialized with
the string and a null byte at the end:

"cat"

'c' 'a' 't'

Pointers are frequently used as arguments to functions
because they let a called function change variables local to

the CALLING function and thus return more than one result.
The library function num is a good example. It must return
both the number of characters scanned, and the value derived
from those characters.

PAGE 2-16 tiny-c OWNER'S MANUAL

num char b(5);int v(0) [

v(6) =

v(0) = expression

return k

]

The arguments to num are both pointers. Here is a call on
num

int val(O)
m = num "17", val

Notice that the arguments "17" and val are both pointers,
val is the interesting one here.

The standard rule for argument passing applies. A copy of
the arguments' values is made into the functions' local
variables. So we have

val

val(O)

,

which becomes v(0) within num

The original argument, val, cannot be changed, but the word
it points to can be. In fact, v(0) = has the effect of
changing val ()

.

So the derived value is returned via the pointer v, and the
number of characters scanned is returned as the value of
num. In effect a call on num says "here are the characters
to examine, and here is where to put the value of what you
see"

.

Version 1.01 P^^^ 2-17

There are other uses for pointers but this is a common one.

2.7 Statements

Simple statements end with a ;
, or the end of the line, or

the beginning of a remark. A left bracket, [, begins a

compound statement. The matching right bracket, J, closes

it. A right bracket also ends the immediately preceding

simple statement.

There are six tiny-c simple statements:

EXPRESSION _ . ^ ^
The expression is evaluated including all associated

assignments and function calls.

if (EXPRESSION) STATEMENT
The statement is executed if and only if the value of the

expression is non-zero. The statement can be compound, as

in

:

if (expression) [

statement
statement

11

II

II

]

if (EXPRESSION) STATEMENT1 else STATEMENT2
Statementi is executed if and only if the value of the

expression is non-zero. Otherwise, statement2 is executed.

Either may be compound. Whether compound or not, either

can start on a new line. The else can also be on a

separate line.

while (EXPRESSION) STATEMENT
The while statement works just like the if statement

except the statement part is done repeatedly until the

value of the expression becomes zero. The statement may be

done as few as zero times, i.e. if the expression is

initially zero. As with if and else, the statement may be

compound, and can start on a new line.

PAGE 2-18 tiny-c OWNER'S MANUAL

return EXPRESSION
The expression is optional. If omitted, zero is used. The
function containing the RETURN is exited. It is assigned
the value of the expression.

break
The innermost while is terminated immediately, regardless
of the value of its conditional expression.

2.8 Notes on Using the Statements

Section 2.7 defines the statements completely. Here are some
not-so-obvious but frequently used consequences of their
definitions

.

if and while statements can be nested in any way. It is wise
to use a consistent style of indenting when doing so.

Any expression can invoke functions, as described in Section
2.5. So the expression in an if, while, or return can invoke
functions

.

The statement in an if statement can also be another if
statement as in

if (x<10) if (x>7) a = 1

Since the second if statement is a simple statement, no
brackets are necessary. The variable a is set equal to 1

exactly when x is less than 10 AND x is greater than 7. Any
number of expressions can be "anded" together like this.

The statement2 of an if-else can be another if-else, whose
statement2 is another if-else, etc. For example:

Version 1.01 PAGE 2-19

command [

char c

c = gc
if (c == • p') print
else if (c == 'd') delete
else if (c == 'w') write
else if (c == 'r') read
else pi "must be p d w or r"

Each else follows its respective if. No nested brackets are
needed. If, followed by a series of else if pairs, followed
by an else, graphically displays an alternation. One and

only one alternative is executed.

Always keep in mind that anywhere you can write a statement
you can write either a compound statement or any of the six
simple statements.

2.9 Libraries and Libraries and Libraries

The sample program in Figure 1-1 uses two functions from the
STANDARD LIBRARY, pi and gn. It also uses random, from the
OPTIONAL LIBRARY. In Section 1.2.5 we suggested you build a

set of useful, general purpose functions, your own PERSONAL'
LIBRARY. In Section 2.10 we will describe Machine Calls,
from which two additional libraries can be formed: STANDARD
MACHINE CALLS, and PRIVATE MACHINE CALLS.

What is a library and what distinguishes one library from
another? A library is simply a collection of similar
functions, and libraries differ from one another on the
basis of what the functions contained within them have in

common. The five libraries that have been mentioned so far

could be briefly defined as follows:

standard library — tiny-c functions used by the PPS and
useful to all programs developed with
the PPS.

PAGE 2-20 tiny-c OWNER'S MANUAL

optional library — tiny-c functions generally useful to
tiny-c programs but not required
frequently enough to be included in
the standard library.

personal library — tiny-c functions frequently used at a
particular computer installation, or
by a specific class of application
program

.

standard machine calls — functions which are used so
frequently by all tiny-c programs that
they have been implemented in machine
language to improve processing speed.

private machine calls — functions which are so frequently
used by tiny-c programs at a

particular computer installation, or
by a specific class of application
programs that they have been
implemented in machine language to
improve processing speed

.

The spirit of the standard, optional, and standard machine
call libraries is that they have the same definition at each
tiny-c installation so that programs developed at one can be
run at another. They are, in a sense, extensions of the
tiny-c language.

The STANDARD LIBRARY is a set of functions that is loaded
with and used by PPS. As a result, these functions are
accessible to all programs developed with PPS. They need not
be defined or specifically loaded to be used. They are
defined in Section 2.9.1 below.

The OPTIONAL LIBRARY is a set of tiny-c functions frequently
useful to, but not always required by, a project, random is
one of these functions. They are defined in Section 4.1.
They are not loaded with PPS, so whenever they are used they
must be specifically loaded. In principle, the optional
library is a large collection of tiny-c program tools.

Your PERSONAL LIBRARY is your own extension to the optional
library

.

MACHINE CALLS are coded in machine language. There is a
standard set furnished with tiny-c (Section 5.10); and you

Version 1.01 PAGE 2-21

can build your own private one (Section 2.10). These are

used for speed, or to interface with special input/output

devices

.

Machine calls have an awkward, undescriptive syntax. For

example, it isn't immediately obvious what

MC 47,64, 1 , 1001

means or does. It is customary to wrap a machine call up

with a nice name, like this:

plot int r, c,nf [

return MC r, c, nf, 1001

]

Now, when you write programs (especially for publication)

you can use

plot 47,64, 1

Although we haven't defined the plot function yet, "plot" is

certainly somewhat more suggestive of what it does than "MC

1001" .

2.9.1 Standard Library

The standard library includes functions that do input,

output, and character manipulation. The definitions given

here show the declaration of the function name and the

arguments, if any.

gs char buffer(O)
Reads a line, i.e., a string of characters terminated
by a carriage return, from the terminal and puts it in

buffer. The carriage return at the end of the line is

changed to a null byte. The value of the function is

the number of characters placed in the buffer excluding
the null byte. A value of is permitted.

PAGE 2-22 tiny-c "OWNER'S MANUAL

ps char buffer(O)
Prints the string in buffer on the terminal. A null
byte signals the end of the string. The null is not
transmitted. The number of characters transmitted is
returned as the value of the function.

pi char buffer(O)
The same as ps but prints the string on a new line. The
number of characters transmitted, not including the
leading return and line feed, is returned.

pn int n
Prints on the terminal an integer preceded by a blank.
The number of characters transmitted, including the
blank, is returned.

gn
Reads a line, and returns the integer at the beginning
of the line. If there is no integer there, it prints
"number required" and tries again.

gc
Reads a line, and returns the first character on the
line

.

putchar char c

Transmits the character c to the terminal. Any
character, including control characters, can be
transmitted, except that if c is n-ull a quote is
transmitted. The character c is returned.

getchar
Reads and returns a character from the terminal. Any
character, including control characters, can be read by
this function.

readfile char name(O), where(O), limit(O)
int unit

Reads data from a file, name is a character string
terminated by a null byte, where and limit are pointers,
unit is an input/output unit (or device or channel).
The file with name "name" is opened for reading on
device "unit". All its records are read and placed in
sequentially higher addresses starting at where, but in
no case going beyond limit. Then unit is closed. If
successful, the total number of bytes read is returned.

Version 1.01 PAGE 2-23

If limit is exceeded, the message "too big" is printed
and -2 is returned. If any other problem occurs,
installation-dependent messages may be printed, and a

negative value is returned.

writefile char narae(O), from(O), to(0)
int unit

Writes data to a file, name is a character string
terminated by a null byte, from and to are pointers,
unit is an input/output unit (or device or channel),
writefile opens unit "unit" for output. The contents of

sequentially higher addresses from "from" to "to"
inclusive are written to unit as a file named "name"

.

Then unit is closed. If successful, the total number of

bytes written is returned. If a problem occurs,
installation-dependent messages may be written, and a

negative value is returned.

num char b(5)
int v(0)

Converts a string of digits without leading sign or

blanks to the corresponding numeric value which is put

in v(0). The first non-digit stops the conversion. At

most, 5 digits are examined. The number of bytes
converted is returned as the value of the function.
Note that the second argument must be a pointer to an

integer

.

atoi char b(0)
int v(0)

Converts a character string of the form: or more
blanks, optional plus or minus sign, or more blanks,

to 5 digits, to its numeric value which is put in

v(0). The first non-digit following the digit part
stops the conversion. The number of characters in b

that were used to form the value is returned as the
value of the function.

ceqn char a() , b ()

int n
Compares two character strings for equality for n

characters. Returns 1 on equals, on not equals.

alpha char c

Returns a 1 if c is an alphabetic character, upper or
lower case. Otherwise returns a 0.

PAGE 2-24 tiny-c OWNER'S MANUAL

index char si (0

)

int n1
char s2(0)
int n2

Finds the leftmost copy OF the character string si
which is n1 bytes long IN the character string s2 which
is n2 . bytes long. If si does not appear in s2, is
returned. If si does appear, return n+1 such that s2+n
points to the first character of the copy in s2.

move char a(0), b(0)
Moves string a into b up to and including the null byte
of a.

movebl char a(0), b(0)
int k

Moves a block of storage up or down k bytes in memory,
a and b point to the first and last characters of the
block to be moved. If k is positive the move is to
higher addresses, and if it is negative the move is to
lower addresses. If k is positive, the byte at b is
moved first, then the byte at b-1, etc. If k is
negative the byte at a is moved first. Thus large
blocks can be moved a few bytes without destruction.

countch char a(0), b(0), c

Counts the instances of the character c in the block of
storage from a to b inclusive and returns the count.

scann char from(O), to(0), c

int n(0)
Scans from "from" to "to" inclusive for instances of
the character c. The integer n(0) is decremented for
each c found. If n(0) reaches 0, or if the character in
to(0) is examined, scann stops, scann returns the
offset relative to the pointer, from, to the last
examined character. Thus, if the third character posi-
tion after from is the last examined, scann returns 3-

chrdy
Returns a copy of an input character from the terminal
if a character has been typed but not yet read by
another function, except that if the typed character is
a null, a 1 is returned. If no unread character has
been typed, a null byte is returned. The character is
not cleared so a subsequent call to getchar or gc will
return the same character.

Version 1.01 PAGE 2-25

a

pft char a(0), b(0)
• ^ vv,^

Transfers all characters from a to b inclusive to the

console terminal.

fopen int rw
char name(O)
int size, unit , . , . 4.

Opens or creates a file for access on logical unit

"unit", "name" contains a string, null terminated,

giving the name of the file. There may be installation

restrictions on file names. The file is opened for

reading if rw is 1, and writing if rw is 2. If rw is 2

and the file does not exist, then it will be created

and its size guaranteed to be at least "size" bytes

Otherwise size is ignored, but must be given. (Use

) For a tape system, and some disk systems, rw and

size may both be ignored, but they must be given

nonetheless. If no error is detected, a is returned.

If an error is detected a nonzero is returned.

fread char a(0)
int unit ^ ^

Starting at a, reads into memory the next record ot

data from the file opened on "unit". The array a must

be large enough to hold the largest expected record.

The length in bytes of the record is returned as the

value of fread. Note that the installation may place an

upper bound on record lengths. A -1 is returned if an

end-of-file is detected, i.e., if an attempt is made to

read beyond the last record in the file. A larger

negative number is returned if an error is detected.

fwrite char from(O), to (0)

Writes^one^record with the bytes from "from" to "to"

inclusive to the file opened on unit "unit". This

becomes the next record of the file. Its length is

to-from+1, and this is the length that will be returned

when the record is read by fread. Note that the

installation may place an upper bound on record

lengths.

fclose int unit
, . ,

The file opened on "unit" is made permanent, and

arrangements are made for end-of-file detection by

fread

.

PAGE 2-26 tiny-c OWNER'S MANUAL

2.9.2 Notes on Using the Standard Library Functions

Note that the standard library has three functions to read
characters, getchar and gc each read one character, getchar
is the fundamental version. It:

1. Stops the program.
2. Waits for ONE CHARACTER to be typed.
3. Starts up again.
4. Returns. the character.

getchar is useful for one letter commands, gc is oriented
toward the input of full lines. It:

1. Stops the program.
2. Waits for a WHOLE LINE to be typed

(ending with a carriage return).
3. Starts up again.
4. Returns the first character of the line.
5. Throws the rest of the line away.

gc is for one-letter answers to questions in a question and
answer dialogue. A very common use is to test for the 'y' of
a yes answer:

ps "Do you want to play again?"
if (gcO == 'y') [

The third function, gs, reads a character string. Since gs
is defined as

gs char buffer(O)

it must be called as

gs pointer- expression- to- character-data

For example,

char x(80)
gs X

will read a character string from the console terminal into
x(0), x(1), ... If you wrote

version 1.01 PAGE 2-27

gs x+10

the string would be read into x(10), x(11), ... Note that a
quoted string is really a pointer. That's why

ps "hello"

works. The last quote of the string is replaced by a null
within tiny-c.

Pointers are also used in standard library functions to
return two or more results, num is an example. It returns
the number of characters scanned. But it changes the integer
v(0). Thus, num must be called like this:

int v(0) , k
k = num "17", v

There is no subscript on v in the call. This call will put
17 into v(0), and 2 into k. atoi and scann also use this
method

.

atoi is just like num, except it handles a sign and leading
blanks, num will NOT skip leading blanks.

ceqn is the standard way to compare two character strings
since this type of comparison cannot be done with a tiny-c
expression. For example, the following will NOT determine if
"cat" has been entered at the console:

char X (1)

gs X

if (x == "cat") . . . /«WRONG

The if will compare the pointer x with the address where
"cat" is stored, and will always be false. To test if "cat"
has been entered, use ceqn:

char x(1)

gs X
if (ceqn(x,"cat" ,3)) ... /*RIGHT

See Chapter IV for another match function, ceq.

movebl, countch, and scann are implemented in assembly
language, and are, therefore, quite fast. index is
implemented partly in assembly language and partly in

PAGE 2-28 tiny-c OWNER'S MANUAL

tiny-c. scann is intended to scan quickly for the nth
occurrence of a character in an array. Here's how to us? it.

int n(0)

,

char x(100) , where
n(0) = 7
where = scann(x,x+100, ' ',n)

This call to scann scans for the 7th blank in x. x+where
will point to the 7th, and n(0) will be zero if there are at

least 7 blanks, where will be 100 (the address relative to x

of the last character examined) and n(0) will be 7 minus the

number of blanks in x if there are less than 7 blanks. So

testing n is a convenient way to see why scann stopped.

There are two facilities for manipulating data files. The

simplest are the readfile and writefile functions. Whole
arrays are read or written as whole files. Slightly more
complex, but more versatile, are the fopen, fread, fwrite,
fclose functions. These can access large files a record at a

time.

For either facility unit 1 is guaranteed to be available on

all installations. Other units are available only on
multiple-unit installations. Note that a unit is a logical
concept. For example, accessing unit 1 does not mean
accessing drive 1 of a multidrive disk system. How units map
onto devices is determined by the installation. But
generally they will be small positive integers, e.g., units
1 through 4 on a four-unit installation.

Note that this specification leaves much to the

installation, tiny-c does not check that any of these limits
are exceeded. Nothing is said in the specification about
what happens when limits are exceeded. So if you write more
than "size" bytes to a newly created file, you may abort,
have your writes ignored, clobber an adjacent file, or your
file may have its size extended and the writes will actually
"take". It depends on the installation.

There are two points-of-view to take on exceeding the

defined limitations of this package:

PRIVATE VIEW: Learn what your installation does
when a limit is exceeded. If it is reasonable and
useful, use the capability. But don't publish the
program without warning others of what you have
done

.

Version 1.01 PAGE 2-29

PORTABILITY VIEW: Don't exceed the limits. Then
you have a portable program that runs on anybody's
installation of tiny-o.

Both views are valid, depending on your objectives. Clearly,
PPS has adopted the portability view.

Among other limits is what happens if to-from+1 exceeds the
installation record limit. As of this writing one
installation truncates the excess, and writes one full
record, whereas another writes multiple records so that all
the data gets written. Each is reasonable and useful in the
private view. In the portability view both installations do
the same thing. In Section 4.3 the function writefile
guarantees a limit of 256 bytes per record. So it is
portable. Other "limits" are what happens if you read and
write records to the same file, open the same file on two
units, open the same unit on two files, etc. When adopting
the portability view, don't do any of these things.

2.10 Machine Language Interface

There are several reasons why you may want to use your own
machine language code for parts of a project. Usually this
is done for execution speed, or to access new devices. If
you write a machine language subroutine, and want to call it

from a tiny-c program, the mechanism for doing so is the
machine-call (MC) function. MC is passed arguments and
returns a value. An argument can be an arbitrary expression.
So, for example, you can write:

k = MC row-1, 2«col+6, 1, 1001

This passes four arguments to MC. The returned value is
assigned to k. An MC can be used in an if statement, or an
expression, or anywhere a function can be used:

if (MC(12)=='x') gotcha (MC(2))

This calls MC with the argument 12. If it returns the value
•x', then MC is called with the argument 2. The result
returned is used as the argument in a call to gotcha.

PAGE 2-30 tiny-c OWNER'S MANUAL

The MC function differs from other tiny-c functions in three

ways

:

1. Its name, MC, is built into tiny-c.

2. It can have a variable number of .

arguments, but must have at least one.
(Other functions must have exactly the
number of arguments specified in their
definitions, and can have none.)

3. It is coded in machine language, not
in tiny-c.

The LAST argument determines which particular machine-coded
function is to be executed. This argument is called the

FUNCTION NUMBER.

Every function is assigned a unique number. Those furnished
as "standard" MCs have numbers from 1 to 999. Those you
write for your own local use can be assigned numbers from
1000 to 32767. This number assignment system guarantees that
a future release of tiny-c won't have new function numbers
that conflict with your own local ones.

An MC is invoked by tiny-c as follows:

1. The arguments are evaluated left to right,
and their values pushed on a tiny-c stack.
(This is not the processor stack, but a

software implemented stack with special
features .

)

2. The last argument is the function number.
It is popped from the tiny-c stack and
examined. If it is less than 1000, the
appropriate "standard" MC is executed.

3. If the function number exceeds 999, then
1000 is subtracted from it and a subroutine
call is made to USERMC in the installation
vector. You must place a jump instruction
there to your MC code.

Note: In the 8080 version, this number is left
in HL. In the PDP-11 version it is at 2(SP).

Version 1.01 PAGE 2-31

Now your MC has control. There are rules and tools for

writing an MC:

1. You must write code to examine the adjusted
function number and branch to your appropriate

function. When done, a return is used to

return control to tiny-c.

2. You must use all the arguments given.

3. You must return a result.

4. You cannot modify any standard cell used by

tiny-c in its internal operation.

5. You must arrange for your MC code to be

loaded, and the jump at USERMC must have the

address where it receives control.

6. You must also arrange the four tiny-c data

areas so they do not conflict with where you

loaded your MC code. (See Section 6.5.2.)

Step 1 — is easily done with 8080 code like this:

USERMC JMP MYMCS

MYMCS

MCERR

MOV
CPI
JZ
CPI
JZ
JMP

A,L
1

MC1001
2

MC1002
MCESET

;branch to one of
;two user MCs

.

Jumping to MCESET signals to tiny-c that an error was

detected in an MC, in this case an invalid function

number. MCESET is one of the MC writing tools. It can

be used for other MC-detected errors.

PAGE 2-32 tiny-c OWNER'S MANUAL

In PDP-11 code the beginning of user MCs might look
like this:

USERMC JMP MYMCS

Step 2 (8080) — You can "use" an argument by calling
the subroutine TOPTOI. (WARNING: This will modify all
registers!) The value on the top of the stack is
returned in DE, or just E if it is a one-byte value,
and the stack is popped. Calling TOPTOI three times
retrieves three arguments. Note that they are retrieved
RIGHT to LEFT as they appear in the MC call. Note also
that the function number was already retrieved (popped)
within tiny-c, so the first call gets the next-to-last
argument. Don't call TOPTOI too often. There is no way
to reassemble the stack the way it was, should you do
so. Don't call it too few times. This leaves garbage on
the stack, and the rest of your tiny-c program will get
truly sick. What will probably happen is an arguments
error for some innocent tiny-c function called later
on. To help, the byte called MCARGS contains the number
of arguments given by the call to the MC, including the
function number. You can use this for checking, or for
an MC with a variable number of arguments.

Step 2 (PDP-11) — You can "use" an argument by calling
TOPTOI. The value on the top of the stack is returned
in RO and the stack is popped. The arguments are
retrieved RIGHT to LEFT as they appear in the MC call.
The total number of arguments in the MC call is in
4(SP)

.

MYMCS CMP
BEQ
CMP
BEQ
MOV
JSR
TST
RTS

#1 ,2(SP)
MC1001
#2,2(SP)
MC1002
#MCERR,-(SP)
PC,@#ESET
(SP) +
PC

Version 1.01 PAGE 2-33

Step 3 (8080) — To return a result, put a two-byte value in

DE, and call PUSHK. This must be done ONCE m an MC

before returning. Failure will probably cause an

arguments error as described in Step 2.

Step 3 (PDP-11) — To return a result, put the value to be

returned in RO and execute the following code:

MOV RO,(SP)
MOV #1,-(SP)
MOV #101, -(SP)
CLR -(SP)
JSR PC,e#PUSH
ADD #6,SP

This must be done ONCE in an MC before returning.

Step 4 — Well, it's obvious you can cream tiny-c from a

machine-coded subroutine. Just be careful.

Steps 5 and 6 — How you assemble and load your code depends

on your operating system. Be sure there is no conflict

with other uses of memory. Section 6.5.2 describes how

memory is allocated for tiny-c and includes

recommendations for the placement of user MC code.

Study this, and make adjustments to your memory

allocation addresses so that your MC machine code

doesn't overlap a tiny-c data area. Here's where some

helpful jump addresses are located in 8080 tiny-c:

USERMC ORG + IF

MYMCS determined by where User
Machine Call program is

loaded

.

MCESET ORG + 2B
TOPTOI ORG + 2E
PUSHK ORG + 31

MCARGS ORG + 3^

Section 6.2.2 defines ORG. The offsets are in hex.

PAGE 2-34 tiny-c OWNER'S MANUAL

Those are the basic steps to follow. Sample MCs (the 14
built-ins) are given in the listings and definitions are
given in Section 5.10. These can be used as examples, for
building your own MCs.

2.11 Computer Arithmetic

All computers have limits on how large a number can be
handled. When the limits are exceeded the number is said to
OVERFLOW.

For both the 8080 and the PDP-11 versions of tiny-c, the
numbers must be in the range

-32768 <= number <= 32767.

When a calculation would be outside this range, this is how
to determine what happens. Subtract (or add if the
calculation is too negative) 65536 repeatedly from the
result until it does lie in the correct range. That is the
answer

.

The example in Section 1.1 is

last = last * seed
= 9801 • 99
= 970299

which is outside the range. Subtracting 65536 fifteen times
gives the "correct" (sic) answer, i.e. the one returned by
the computer:

= 970299 - 15 » 65536
= -12741

Version 1.01 PAGE 3- I

III. THE PROGRAM PREPARATION SYSTEM (PPS)

The Program Preparation System (PPS) is a tiny-c program
that lets you type in, edit, run, and write a program on a

cassette or floppy disk, and read it back later for more
runs and/or edits.

3.1 Fundamentals of PPS

A PPS session begins by reading PPS and starting it. (Refer
to the installation chapter for your particular system to

find out how to accomplish this.) PPS prints:

indicating it is ready for input. You can now type lines of
your program, or give commands for PPS to execute.

Any line you type must end with a carriage return; PPS does
nothing with your input line until the carriage return is

given

.

After the carriage return, PPS will either enter the line
into your program, or execute the command. Then it gives
another

and awaits another line or command.

If you mistype before giving a carriage return, the ASCII
DEL character "kills" the most recently typed character. You
can enter it several times to kill several characters.
[Note: if DEL is unsuitable for your terminal, or your
editing habits, the appropriate installation chapter
describes how to modify this to a character of your choice.]

PAGE 3- 2 tiny-c OWNER'S MANUAL

If you mistype a line so hopelessly that you want to do the
whole line over, then the ASCII CAN in tiny-c/8080 or NAK in
tiny-c/11 "kills" the whole line. CAN is control-X on most
keyboards, while NAK is control-U. It must be given before
the carriage return. You CANNOT give it several times to
kill several lines. It will kill only the line which you
have started, for which you have not yet given a carriage
return

.

If you have typed a carriage return and still want to make a
change, this can be done. You must explicitly delete the
line, using the delete command described in Section 3.3.
Then you can re-enter the line.

DO NOT type in line numbers at the beginning of each line,
tiny-c does not use them, in fact, does not even tolerate
them

.

To indent, use tabs or spaces. The use of indentation to
show the number of logical conditions in effect at each
point in a program can greatly enhance its readability.

Now, what is a command, and what is a line of text?

A COMMAND ALWAYS BEGINS
WITH A PERIOD, A PLUS, OR
A MINUS. ANYTHING ELSE
IS A TEXT LINE.

We will cover the PPS commands later; first, we will go over
text lines. To do this we need the concepts of PROGRAM
BUFFER, LINE ZERO, and CURRENT LINE.

As you enter program lines, they go into a character array
called the PROGRAM BUFFER. Think of the program buffer as a
series of text lines. If you enter a text line, it goes into
the program buffer. It may be either added at the end of, or
inserted between, lines already in the buffer.

Initially the program buffer has only one line, called LINE
ZERO. Line zero has no text, just a carriage return. No
matter what else you put in the program buffer, line zero is
always there, and is always just a carriage return.

One line in the program buffer is always the CURRENT LINE.
Initially it is line zero. You can always display the

Version 1.01 PAGE 3- 3

current line by giving the print command:

> -P

(The ">" is the prompter printed by PPS. The ".p" is the

print command typed in by the user.)

3.2 Entering Text Lines

Now, where do new text lines go?

A TEXT LINE IS ENTERED
AFTER THE CURRENT LINE.
THE NEWLY ENTERED LINE
BECOMES THE CURRENT LINE

Initially the
goes into the

zero line is current. You type a text line. It

program buffer as line 1, and becomes the

current line. You type a second text line. It goes in after

the current line (i.e., line 1), and becomes line 2; now

line 2 is current. So if all you do is enter text lines,

they each go into the program buffer one after the other.

There' are commands (described below) to make current any

line in the buffer. Whenever you enter a series of text

lines, each is inserted one after the other below the

current line. So you can enter text lines anywhere in the

program buffer. You will discover that this text-line-entry
rule is simple, natural, and powerful.

3.3 The PPS Commands

In the commands below, the "n" represents an unsigned (no +

or -) integer. Exactly one blank must separate an integer n

from preceding characters.

>.p Print the current line.

>.p n Print n lines, starting with the current line.

The last line printed becomes current.

PAGE 3- 4 tiny-c OWNER'S MANUAL

>.d Delete the current line. Make the line BEFORE
it current.

>.d n Delete n lines, starting with the current line.
Make the line BEFORE the first deleted line
current.

>+ Move down one line; i.e., make the line after
the "present" current line, the "new" current
line.

>+n Move down n lines,

>- Move up one line.

>-n Move up n lines.

>.n Make the n-th line in the program buffer the
current line.

>.l text Starting with the line AFTER the current line,
and proceeding to th: of the program buffer
if necessary, locals j _^;;e containing "text".
If found, print the line, and make it current.
If not found, print "?", and leave the current
line unchanged. There must be one blank between
the "1" and the first character of text. A
(ASCII octal code 136) as the first character of
text means the text must begin the line. A

as the last character of text means the text
must end the line. Text may contain blanks.

>.l Same as above, but using the same text as given
in a previous locate or change command.

>.c text newtext

In the current line, the first occurrence of
text is replaced by newtext. If text does not
occur in the current line, no change is made.
In either case the resulting line is printed.
As shown, there are exactly two blanks in the
command, one after the c, and one between text
and newtext. In this form, no blanks can be used
in text or newtext, because a blank is the
delimiter that separates them. However, since
any punctuation character can be used as the
delimiter, the command can be given as:

Version 1.01 PAGE 3- 5

>.c/text/newtext

In this case, blanks can be used in the texts,

but /'s may not be used. An optional delimiter
is permitted at the end of newtext:

>.c/text/newtext/

Either text or newtext can be empty.

> . c//newtext/

.

will insert newtext at the beginning of the

line, whereas:

>.c/text//

will erase text from the line. Finally, when

making a series of identical changes, you need

not retype the texts over and over:

>.c Makes a change on the current line using text

given in the most recent change or locate

command, and newtext given in the most recent

change command. The carriage return must be

immediately after the c.

>./ Prints the current line number, the total number

of lines, the total number of characters used in

the program buffer, and the total number of

characters unused.

>.r filename

Reads a file
putting what
current line
installations
filename .

]

>.w filename

Writes all lines to a cassette or disk, giving

the name "filename" to what is written. [Note:

Some installations may not use the filename.]

from cassette or floppy disk,

is read AFTER the last line. The

is not changed. [Note: Some
of tiny-c may not use the

PAGE 3- 6 tiny-c OWNER'S MANUAL

A command line starting with a period and at least two
alphabetic characters is executed immediately as a tiny-c
statement. This is how programs are started. Thus, to run
the "guessnum" program in Figure 1-1

:

>.guessnum

Arguments can be given. To add 7 and 11 and print the
answer, call the pn library function:

>.pn 7+11

A compound statement can also be given, but it must fit on
one line (64 characters including the period and the
carriage return.)

>.[char a; while ((a=a+1)<=127) putchar c]

Machine calls can be directly executed:

>.MC 24, 64, 1 , 1001

When a program is running, it can be halted and control
returned to PPS by typing the ASCII ESC key. (Note: if ESC
is unsuitable for your terminal, it can be changed to
another character. See Section 6.5.4.2).

3.4 Notes on Using PPS

3-4.1 Bumping the Top and Bottom

Several commands can "bump into" the top or bottom of the
program buffer. This is all right, and in fact, can be
useful. For example, suppose there are 50 or so lines in the
buffer. Then

>.0
>.p 999

makes line zero current, then prints the whole buffer. The

Version 1.01 PAGE 3- 7

•p 999 "bumps into" the bottom of the buffer, and stops. The

commands .d, +, .n, and .1 can also bump into the top or

bottom. A convenient way to go to the last line is:

>.999

3.4.2 Deleting

Line zero cannot be deleted. To delete lines at the top, go

to line 1, then give the appropriate delete.

Notice that delete moves the current line up, not down. Thus

any new lines typed after a delete will replace the deleted
lines

.

3.4.3 Line Numbers

When lines are inserted or deleted, lines further down in

the buffer immediately have different line numbers. So .n is

not the best way to locate a line. For example, in Figure

1-1 , the command

:

>.22

makes the first line of random current. But if edits are

made to guessnum, then the 22nd line may or may not be the

first line of random. For this reason, locate is a more
powerful tool.

3.4.4 Using Locate and Change

The * convention in locate text makes it easy to locate the

beginning of a function. To locate the random function:

>.l "random

PAGE 3- 8 tiny-c OWNER'S MANUAL

A match occurs only if the text "random" is at the left
margin of the page. So in Figure 1-1, line 6 will not match,
but line 22 will match.

Locating all lines with a given text is done like this:

>.0
>.l random

This will match line 6 in the sample program. Then:

>.l

matches line 19, the comment containing the word "random".
The following .Is match line 19, line 21, and line 22, while
the final .1 prints "?" indicating no further appearance of
"random"

.

Making a common change throughout the buffer is just as
easy. To change the variable named "number" to one named
"num"

,
type

:

>.0
>.l number

This will make line 1 current. It is a comment so we do not
want to change this occurence of "number". Type:

>.l

and line 5 becomes current. We do want to change "number"
here, so type:

>.c number num

Line 5 is changed. Continue with:

>.l

which makes line 6 current. Change it by typing:

>.c

and resume with:

>.l

You continue in this fashion, changing lines selectively,
until you bump the bottom.

Version 1.01 PAGE 3- 9

3.5 Errors

When a program error is detected, the program halts. A

return is made to the system. Your program text is intact,

and you can edit it, or restart it, or write it to a

cassette. It prints three lines, as shown:

17 — err 26
text of bad line

<

The first line shows the line number, and the error number.
The second line is the text of the bad line. Immediately
above or to the left of the < is where the problem was

DETECTED. This may or may not be the real problem, depending
on the logic of the program.

Upon halting, the current line is the line printed.

PAGE 3-10 tiny-c OWNER'S MANUAL

The error numbers and their meanings are:

1 Illegal statement
2 Cursor ran off end of program. Look for missing] or)

3 Symbol error. A name was expected. For example 10 + +

will cause this.
5 Right parenthesis missing, as in: x = (x+a*b
6 Subscript out of range
7 Using a pointer as a variable or vice versa
9 More expression expected, as in : x = x +
14 Illegal equal sign, as in: 7=2
16 Stack overflow. Either an expression is too tough, or

you are deeply nested in functions, or a recursion has
gone too deep.

17 Too many active functions
18 Too many active variables
19 Too many active yalues. Values share space with program

text. Crunch the program and this error may go away.
(Remove remarks and unnecessary blanks, and shorten
variable names.) Or settle for fewer features, or buy
more memory.

20 Startup error. Caused by a "garbage" line outside of
all [], i.e., where globals are declared. A missing [

or] can cause this.
21 Number of arguments needed and number given don't agree
22 A function body must begin with [

.

24 An illegal invocation of MC
26 Undefined symbol. Perhaps name is misspelled, or you

need an int or char statement for it, or the function
isn't loaded.

Version 1.01 PAGE 3-11

3.6 Sample Session with PPS

>./

>/* Guess a number between 1 andql00
>.c/q/ /
/* Guess a number between 1 and 100
>/* T. A. Gibson, 11/29/76
>guessnum [

> int guess, number
> number=random(l, 100)
> pi "guess a number between 1 and 100"

> pi "tyype in your guess now"
> while (guess != number) t

> guess = gn
> if(guess == number)pl "right!"
> if (guess > number) pi q" too high"
> if (guess < number) pi "too low"
> pi""; pi""
>] /* end of game loop
>] /* end of program
>./
15 15 405 4595

>.l
/* guess a number between 1 and 100
>.p 99
/* guess a number between 1 and 100
/* T. A. Gibson, 11/29/76
guessnum [

int guess, number
number= random (1 , 100

)

pi "guess a number between 1 and 100"
pi "tyype in your guess now"
while(guess != number)

[

guess = gn
if(guess == number)pl "right!"
if (guess > number)

pi q" too high"
if (guess < number) pi "too low"
pi " "

; pi "
"

] /* end of game loop
1 /* end of program

PAGE 3-12 tiny-c OWNER'S MANUAL

>.r random
247
15 27 652 4382

>.p
] /* end of program
>+
/* random — generates a random number between little
>.p 99
/* random — generates a random number between little
/* and big
random int little, big [

int range
if (last==0) last=seed=99
range=big-li ttle+1
last=last*seed
if (last<0) last=-last
return little + (last/8) %range

]

int seed, last
> .guessnum

guess a number between 1 and 100
tyype in your guess now50

11 err 26
if(guess > number) plq" too high"

<
>.c/q/ /

if (guess > number) pi "too high"
>.0

>.l yy
pi "tyype in your guess now"

>.c/yy/y/
pi "type in your guess now"

> .guessnum

guess a number between 1 and 100
type in your guess now50

too high

25

Version 1.01 PAGE 3-13

too low

37

too high

27

too high

26

right!

>.w guess
3 27 651 4349

651
>

PAGE 3-14 tiny-c OWNER'S MANUAL

Version 1.01 PAGE 4- 1

IV. tiny-c PROGRAM EXAMPLES

Since we all know the value of pictures versus words, this

chapter is devoted to tiny-c program examples. Section 4.1

contains some software tools which are candidates for

inclusion in the optional library. Section 4.2 contains a

complete original computer game called Piranha Fish. The

tiny-c owner initially interacts most with the PPS; thus,

Section 4.3 provides a readable and fully commented version
of PPS together with the standard library. Sections 4.4, 4.5

and 4.6 show how tiny-c can be interfaced with specific

hardware devices.

Programming can best be learned by reading programs. Such

reading helps you learn style, idiomatic usages, and, in

general, get an appreciation of the possibilities of a

language

.

The sample programs included here are intended not only to

be useful, but also to be read. Therefore (wherever
appropriate) we have commented on their style.

4.1 Optional Library Functions

These routines complement those in Section 2.9. We give
their definitions, then the code, then a few comments on the

programming style.

random int little, big
A pseudo-random number between little and big

(inclusive) is generated, little cannot be larger than

big, and their difference should not be larger than

4096. The global integers seed and last are part of

random. These can be initialized to any value. Their

value determines the sequence of numbers generated.

PAGE 4- 2 tiny-c OWNER'S MANUAL

htoi char b(0)
int val(O)

Converts a string of hex digits to an integer. The hex
digits may be preceded by blanks. The value of the
first non-hex digit (except for leading blanks) stops
the conversion. The integer is put in val(O), and the
number of characters scanned in b, including blanks, is
returned

.

blanks char b(0)
Counts the number of leading blanks in the string b,
and returns the count.

ceq char a(0), b(0)
Matches the two strings a and b up to but not including
a null byte in a. is returned on mismatch, 1 on
match. Thus, a must be a leading substring of b to get
a match.

char b(0)
ceq b, "yes"

returns 1 if b has "y", "ye", c. "yes".

itoh int n
char b(4)

The integer n is converted to four hex digits plus a
null byte, which are put in b.

itoa int n
char b(7)

The integer n is converted to an ASCII representation
of the integer: a minus (-) if needed, followed by 1 to
5 digits followed by a null byte. The string is put
into b. The number of bytes of the string (excluding
the null) is returned.

moven char a(0), b(0)
int n

n bytes are moved from a to b

.

4.1.1 tiny-c Code for the Optional Library

random is shown in Section 1.1 (Figure 1-1). The other
functions are given here.

KIP I Tl-^B

f ^ C » rf^

@ d

V D'*-' u k LL ,. <0

^'61 gin

Version 1.01 PAGE 4- 3

FIGURE

/* Converts hex to integer. Returns result in val(0).
/* Returns number of characters scanned as value of htoi.
/* First non-hex character stops the scan,
htoi char b(0)

int val (0) [

int n /* Number of chars scanned.
b=b+ (n=blanks (b)) /* Skip blanks. Set b to first nonblank.

/* Set n to number of blanks skipped.
val (0)=0
while(l) [

if (b(0)<'0')break
else if {b(0)<='9 ') val (0)=16*val (0)+b(0)-'0

'

else if (b(0)<'A')break
else if (b(0)<='F') val {0)=16*val (0)+b(0)-'7

'

else break
b=b+l
n=n+l

]

return n

]

/* Counts leading blanks in b.
blanks char b(0) [

int n
while (b(n)==' Mnsn+l
return n

]

/* Tests if a is a leading substring of b. Returns 1 on
/* true, on false,
ceq char a (0) , b (0) [

while(a{0) 1= 0) [

if (a(0) 1= b(0)) return
a=a+l; b=b+l

]

return 1

]

/* Converts integer to hex.
itoh int n

char b(4) [

int k
b(k=4)=0

PAGE 4- 4 tiny-c OWNER'S MANUAL

while((k=k-l)>=0) [

b(k)=n%16+'0

'

if (b(k)>«9')b(k)=b(k)+7
n=n/16

]

]

/* Converts binary integer to ASCII,
itoa int n

char b(7) [

if(n<0) [

b(0)='-'
return 1+itoa (-n ,b+l

)

]

if(n<10) [

b(0)=n+'0

•

return 1

]

int k

b(k=itoa(n/10,b))=n%10+'0'
b(k+l)=0
return k+1

]

/* Move n bytes from a to b

.

moven char a(0), b(0)
int n [

if (n)movebl (a,a+n-l,b-a)

End of FIGURE 4-1

4.3.2 Comments on Style

Most of the code is straightforward, ceq is interesting
because it increments the pointers a and b, instead of
declaring an integer subscript and incrementing the
subscript. Of course, only the local copy is being
incremented. The pointers passed as arguments into ceq are
not modified. This follows the general rules discussed in
Sections 2.5 and 2.6.

itoh knows it's going to derive four hex digits. It gets the
last one first, and puts it into b(3), and then works
towards b()

.

Version 1.01 PAGE 4- 5

itoa also derives its last digit first, but it does not know
in advance how long the string will be and hence where to

put the first digit. There are several ways to handle this
problem

:

1. A series of if statements on n, e.g., n<9999,
n<999, n<99, n<9, could be used to compute
the si-ze of the output string in advance.
Then the technique for itoh can be used.

2. The bytes can be put into b(0), b(1), ...

in that order, then reversed.

3. The bytes can be put into b(6), b(5), ...

in that order, then moved left if needed.

4. Recursion can be used to get everything
into place directly, with no size compu-
tation required.

itoa uses the last technique. It is a good example of
recursion. The illustration on the facing page describes
better than words how it works.

4.2 Piranha Fish — An Original Game

You are leading the following party on a safari through the
jungle

:

2 cannibals
2 big-game hunters
1 doctor
1 nurse
3 missionaries

You arrive at a 1 00-yard-wide river filled with piranha
fish. You must cross the river. There is a leaky canoe on
your shore, which can hold, at most, 4 people. The cannibals
paddle the best, followed by the hunters, the doctor, the
nurse, and the missionaries, who are notoriously weak. You
must decide who gets in the canoe for each trip back and
forth. Get the party across with a minimum of carnage.

PAGE 4- 6 tiny-c OWNER'S MANUAL

The doctor can attend major and minor wounds, unless he is
himself wounded. The nurse can attend minor wounds. If the
doctor is wounded, and the nurse is on the same shore as the
doctor, she can (under his guidance) also attend major
wounds

.

Commands

:

s Prints status of game.
digit For identification, each player is assigned a

digit from 1 to 9 • (See a status report). Typing
a player's digit puts him in the canoe.
Takes everybody out of the canoe. Use this
when you have put somebody in, and change
your mind .

Starts the trip.

Put all your commands on the same line. A carriage return is
unnecessary. For example:

puts players 2, 5, and 9 in the canoe, and starts the trip.

Now try a game or two. When you want to learn more, read
facts. Good luck!

Type .pf to play the game. When "seed" is printed, enter a
random number.

4.2.1 Facts

The speed of the canoe is the average of the paddling
strengths of the players in the canoe. A speed of 100 gets
the canoe to the opposite shore just as it fills.

The initial paddling strengths are:

259.

cannibals
hunters
doctor
nurse
missionaries

120
90
70
50
40

Version 1.01 PAGE 4- 7

Strengths are multiplied by the following factors for
unhealthy paddlers:

During a trip certain events happen, with probabilities
shown:

Canoe fills at predetermined rate.
During each (speed/4) yard of the trip a single

pf jumps in the boat with probability 0.25.
He picks a random toe. Cannibals always
spear the fish, and half the time make a

hole in the boat. Hunters always panic,
and capsize the boat. The doctor is quick
half the time, and panics half the time.
The nurse always panics; half of the time
she is calmed down, and the other half, she
jumps (alone) out of the boat and must swim
ashore

.

When the boat capsizes, everybody must swim. Dead
players always float to the correct shore,
and somehow the canoe gets there, too.

When swimming, the events that follow may occur to each
player individually:

Dead players always float ashore.
Live players make it ashore unscathed half the

time. The other half, they acquire minor
wounds (prob. 0.67) or major wounds (prob
0.33). In no case do they come out of the
river healthier than they went into it.

At the present time, these probabilities are
independent of the length of the swim.
(Improvers take note.)

minor wound, attended
major wound, attended
minor wound , unattended
major wound, unattended
dead

0.9
0.8
0.8
0.7
0.0

PAGE 4- 8 tiny-c OWNER'S MANUAL

On the shore, a player's health can become worse:

Healthy players never get worse.
Attended players get worse with prob 0.11.
Unattended players get worse with prob 0.33.
Dead players never get worse.
To get worse means a minor wound becomes major,

or a player with a major wound dies.
When a minor attended wound gets worse, it

becomes a major unattended wound.
These "worse health" events are computed for

every player once per canoe trip, whether
or not the player participated in the
latest trip. So players wounded early
have more chances to get worse than
players wounded later.

Score:

1000 for a perfect game.
-100 per dead player.
-30 for major unattended wounds.
-15 for major attended wounds.
-10 for minor unattended wounds.
-5 for minor attended wounds.

Highest score achieved to date is 995.

Maximum Carnage Game

Certain people with twisted minds may decide to try for a
minimum score. If you do this, a new rule is needed: On each
successive round trip of the canoe, you must leave at least
one more person on the far shore than on the previous round
trip

.

Happy paddling!

•

>
•i-t

iH
10

P
(0 CO

•H
fH

m
0)

u
c rH
•H x:

(0 c

c c 3
4J

0)

k-l— 0)

0) >,

> — (0

(Ti II in

e ^ cu V
- 0) •

ttJ rH —

'

>i cu

TJ c c
C TJ l-l to x:
m ITS •<H T3 u
u a. 4J 00 TJ rH

0) •iH II CN (0 •iH (0

T3 ^ <u ^ rH 0> DU (1>

O C II II II x:
U

CM 'S' 00
c
•H *

£ c
(0 «H C «D ••-t iH 4J 0) 0) 0) D>

(0 '"H ^ >, <0 •-• 1-1 iH
II II

(0

iH
•iH

4-1

(0 "O "DS U-l "O "O TJ
r-l

rH
V II

(0 a •1-1 fH o^ x: r~ (0 (0 m c •i-(

£ iH U\ c II II II II O^r- in dm P
C iH C 4J •f-l ^^^^ II II II II II CM II CQ cn
10 u m •M ••H 4J c II »H

u 0) -P 4J as a V) (0 •iH Ou
r-4 W W 0) 3 10 •iH

O4 3 a oooo<D<Da>a)a)(0(i) iH (0

J3 ro "a Cli 0) 3 U) i_i4J4J4-)4JrHrHi-li-Hr-l U 0) II <U rH a <u ^
(0 c x: cu 4J O'O'O'O'O'O.!''! W •0 B a rH ^

x: 10 9) Qi(0 <0 <0 (O'O'O'D'O'O C» Q) <0 rH 4J -n U
• u u s: u Ui 3(Ut4.|i4-|kt-l(0 (0 (0 (0 (O'H (0 r-l c x: -H

CM (0 4J n px:x:x:x: aaaaan •iH •H ^
• £ c « M-l * a> « 4-)

•'H \ a (0 Ui

>-l

T3
c
ns

e
s
o
o

a

a
cr> -

c
•H
O
en <D
M x:
o o

s

(1)

>
o
e

Ous
3 r-l

73 a
u :
(0 s
x:
o a

3
cr

0)

rH
T3
TJ
(0

a
0)

c
o

*J
m
m
0)

4J

<
K C\ U

3

^ LD B

C ^ OJ

c

e
e
o
o

•o
(0

o «
iH S
C rH
3 Ou

kj O T3 \
C 0) (0

« II > Du\ V O
e o

r-l 4J

+ x:
^J >,

' II .H -o^ -<-t tti o
U - ^ 0) x>
ro • O

>— £ - 0» ^ C
O II rH M-l

rH 4J II S -H B^ <u -r-l II x: m

rH II M-l

B
T3
0)

•D
id

(0

O
XI

p
c

•f-t

u
a,

*

0)

o
c
'0

o

0)

>i

4-)

3

«

0^

II

V

^ a
6

t 0) 01

II (U II B
II S O II

•r-l 11 C •o 0)
>— flj (0 >
U-l C o UH 3 o
•rl •H •r< 4J e

O B (0 B
0) CP w 0) 4J

CO c a U) (0 a
rH rH
0) —

1

(U

B

1—

1

v
11
11

a o
3 x:
TJ CO

)H

0)
•r< x: B

u
O rH

> rH
o C 3
e o u
II B
II B 0) a

0)

rH

a. -U U] O II

«— (0 Du C
UH O iH
•H ^ ^ O +
—s C O B c
Ol-rH C W •'^

c m a. o

O -D II
--^ C

tji m — ^ II

C 0> ^ II XT'

II
Vj OiA C

V rH >— CT>'H^ m 0) c o
rH iM -n tji

+ B O O C

II a en c 0)

»^ ^i4H y-i o^ a-'^ •H E
-IS Q) 3
I II rH 0) 0) 0)
r-l as ••H ^ w w w
II 3 II J= U-l rH rH rH
a IS •rH a> 0) 0)

•H

>
o
e

ca
en
c

•i-t

o
cr>

c
II

<u V
B O B

c iH
to m m +a u a •H

II

qT •<-l

o o
c c •iH ^
<0 <D

O B O U iH S

u-i m i-t £ £ iH

> •

o <u

e e

£ 4J
4J

.H
(0 O
0)

JC 4J
•—• -rH

J-" C
O 3

(0 0)

• * CO

B
•>

> «
o VIS

J2 E s TJ
4J iH

0) V ^ a
CO i-H ^ ^ E
u T3 ^ (0

o
C (0 C 0) 0) IS to

o rH •rH Q,.rH Ol -tJ I-t

(0 i-l

D
O O CO

cr> + CT> +
m A to

k-l rH -H
a C C 4J Jk: rH

II T3 « to C 3 -tJ

V flj 'ST "H •rl UH (C

CO

•r-l

p-^ Q) 'O
rH a,\. II

to <— o
+ * XI

m T3 + CD -U rH 4J a>
•rt aj CO rH ITJ 0) N
II II <U 3 o x: •r(

a> r-H V4-I rH Eh CO

o 0) II
^ to ^ II UH B a

3 Oi-P 0) II
w rH rH

"D CO (0 4) 0) "D a> rH — a u
c •—

' 1-1 O iH (X iH 3 UH

o •tJ rH •H to 0) -n
u ax:

o •rH (0 S to 5

\ 4J

(U

o
c
m
o

E
rn

•H <—

•

c^ (0
•r-1

^—

'

03

>
c

U e <c

<̂u

U C

x:
to to

1 u
rH OJ

03 11 >1
• ^ (0

-O ^rH
B 0) -H Q,
rn x: —

'

U 0) UH
(0 >
0) s
u e to

W jC (0

•H W to (U U •

C
1 M-l x; 3 B
(S <V <U XI to to

Si C u to a
-H s O

iH x: m T3 0) •

C rH iH to en 5 to 0)

a 3 II C CO i2 rH 4J
>4-»

II >. 0}

•% -—

s

(0 * u rH
B dp M-t CP\ V a
(Ob » c > S s
(0 to 1-1 0) II u

x: V <D

e Eh —. (1) « UH
dJ o rH \ S to

O rH -O * + c to •H
05 C rH C \'rt m a
O nj 3 (0 II JJ 0)

rH •H 1 IS oT
M-l rH II 0.
03 rH C ^ II c x:

0) 0) c)H (0 to

M-l rH •rH 4J
1 1 B» -rl C

II x: (0

S
tT> rH UH

B
to

f--1-H s c Ol-H a

cn
c

B B
C3c /It

r-« _
*Jm E

;

i>
If) S V-i

4J <D
mUi * 03 ^
•r^

C U
/II

M4 s 03
0. >
05 • tu V- B S
4-1 C c B OJ •

in 1 1 ,_J J_J
•A-4 (rr

C J 1 1^

05 P) III •0 (0 •rH rH
/•sw .P A—> /II to ^ ui •rH Q)
n\ 4J

to +J to (D (1) (0

•iH u to •rH XJ rH Vj

0) <s
CO 0) 0) TJ x: j:: .Si rH
•iH X c \

•w 4J ^ 10 •rH (U

to •)->

ro -u • a; (U (0
• 0) tJ c rH e-r-i u

Cli •H rH rH (C m 4J
(0 i CT> 0) g --^ c

3 C t3i to a •rH

i2 •1—1 •rH C 3 to 0) to

^ «. to T-l x: c +
<U to rH x: •rH to •rH a>

x: m ^ x: (0 5s to -tJ

X: rH g B >. to x: rH (0 (tj

rH U •H 0) 0) u
c x: w TD a (D M-l rH
•rH to -H c c (0 (0 c

•rH (0 0) Xi rH C C •rl

TJ U-l)H •rH x: •rH 3 •rH to

0) OQ A to £-• —
' c IS 4J

IIa IC 0) to c >H « 0)

•C > m m g -M

c • A g • V <4-i (0 nj
•1—1 «3 -o e •C a x: a •o C >H

i-i C II
4J 0) to w (1) c D .0 jk:

x: •H 3 a rH >4H x: •'H »4H x: <o BSC
to a a (0 •H E-i MH •H Eh ^•1 t-i t-^

••^ JZ U 9} S Q) BB B^OLiOltO
14-ltO J-i<<Og •X:Q)rHrH QJrHUH

•rt njSS (tjB'^tOCLCL tOQj-rH
<>4H .CrHrHCtOUHrH rH

(u u a (X a ou^H (u r-. o)

« c\ O

CO

(1)

4J

(0

4J

O
O
x:
10

0)

X

•iH

D
cr

(0

^ o

s o
>-"0
e
O 0) "O

. . U rH iHw a a
0) U4
tn -r^

r-i

0)

in
II

M-l IQ

CT>

3
u

4J

ro

O
O
O
O
O
Si

0)

X
4J

U rH
•0 rH
O 0)

0) I

c

> 1 g
l*T\ CE
r*
L>« 1 I •rl

V
f 1 r4

S/ 1 (0
t\
\J •rt

B
w rH * J)

•rH W Km r;

CO
fllU/ •r4

IE Ti
n\ •w •

1/3 (V 4-J as

\J 'rl

w
• 4-)

r \ 4)

•r-l x:

m C
Q4 •tH ^ UH

C iH ^
w <Q rH
m CU (I) c
f 3

u (0 CO rH
JZ •'^ 10 (0

4-> rH rH
U 0) >l - rH

to S to (0

"D UH

Si e
0) N C >t 0)

x: •rl U ID £ x:
Eh n (U 0) C CO to e

> B a £ > <0 B 1—> B .rH

1 rH <o Eh U ki rH (U rH ^
1 a u >—'B B >^ Q< 10 (0

1 <U rH rH >4H rH
» to O4 C-H r-. 0)r-^ Q) r-.

r-^ 0)

vj
/-• B
w • CU

it

to Cu
4J to

(0

rH
• MH e fll

>,
B B (0

to to r-i

x: a a di
(0

a rH a
ij —

' c (s c u
to — a
e E
•rl A ••. CD

T3 s
(0 Cu u C ^

ns <u

a ax: >< >- >1 U
p (tJ ^ m

u rH rH «H rH
0) m m Qu •rl a< ca

>i.C 0) B B '—
' s

ro U jC rH 0) rH Q) rH
rH to a to a
a. g UH rH rH

•H •rl

«
MS

B
*

3

•>

B
ft

r\\j

<D

B
r*

1 t

CO
>

U4
wi

fllw
o.
tn \J
r \U <Umvj
4)

CO B (D
II
II B

II iH 'O
W w 4J

II fC CJ»
__ 1 1 ^ ^ B
M* r-n -J vj " B r/1UJ

to >•> M^ ill (Q Vi4 (Q U] B rtlw
1 1 O •v.

111 tn *v

U CO
/ti vy r-. B

%./ ft _ ft.MM" Wi -J /It ft n\

hi** V O4 N d)

B
Qd^ CO 0)^ II

4J a > (0

M (0 U C
»J n M

V <v

oa x: x: (0 a g CO u

H r-l M-l jc x: B u tu
x:

O (0 Q) (0

Q> *W iH to M n
c j:: 0) .1-1 (0 Q* C c
to ^ m 0) (0 ^ cn II to

W VW r-l 0) J= 0) .

w ^ w 0) < (0 c
rH M-l rH <D N U r-l 10

1—1 0) 0) JC fl3 B ••^ iH 0)

H (0 ^ iH x: ^ i w
a a ^ (0

« \ 0)

It)

o
c

4J
4J •

(0 n
o

c c

CO

c
3
2 *

O
c

o
s

ID

JZ
4J

5 ^

O '-^

4J CN
O II

o —
Q

în
* ^

4J

r-l

(0

in «u

II

II

U
o

V
o
o
>.

0)

c
0)
4J

V
in

0)

" o

<Tt to

II II

V II
«-

a> o x: t

0*^ to »M

W iH (4-1

«j -i-i •<-•

x: x;
o J

4J
I

r-t ^ 4J

x: j:: B

+ iH to

<tj a.n (u

II x:
II II ct,

a a c

x:
4J 4-1

i-H iH
<0 ro c

x: x: a

ro
II

II

a
x:

0)

l«-l

II

x:p
iH
(0

0)

o
x: V

0)

to

u
3
C

>1
x>

•a
<u

c
0)

u
flj

to

a

to '-^
II a

II
--^ a c

a+j x:

0) ro iH B
U 0) (0 B
o x: <u r-i

JZ — x: a
to '

M-l

IV

o
•r-4

>
•a
m

to

u
o

o
o
•o

0)

ij

x:
4J

to

T3
C
3
O

o
•n
10

S

o
to

rH
10

T3

^ 0)

II U ^
II o m

x: Va to ^^ II in
x: II

--^

4J ^£
rH in 4J

10 *^rH
0) 0) (0

x: k-i 0)

o x:
U-l J" w
•tH to IW

to

n 0)

cn

M-l

O (U

>i VO 'i-l

£ • w
4-)

in 1—t i-t

u 10 o ^
3 4) U-l m
C i3

A) Q)

>i U-4 C g
£i •iH O O

"O
0) C rH 4J

•o O iH 3
c •O < OQ

0)
J-l 1—1 * *

<
B *
(0

a

in
II

X!
4J

iH
10

0)

x:

II

II

4J

10

0)

TJ
B
0))-)

to o

O »W

C
x: -H

I o
3 «.

E B
01

(0 a

I—I r«j V
IS CL

S s_* w
II E £
II O 4J

CU C 10
«— <0 0)

, iH M-l <4-l

"iH "r-l

0)

£ Q) 0)

'-'WW'
UH iH iH

i—. ro^ 0)

II II

la

^ rH
E 10

O 0)

C
«0
V.4 tM

U-4

B in
CO II

a II

a
a«-

c

10

•« 0)

B jc
B
rH «W
CLi'iH

B
0)

cn

o
rH 3
+ E

m

O
(0
MH

cn

B
cn

a

cna
in
II

II

^ Cl-

in «—
V ,c^ -tJ

arH
<0

s: 0)

rH II

(0

0) CL
S: ^ O-rH^ jC (0

4J •« (U
•H rH B £

(0 B ^
0) 0) rH UH
cn x: Oi'H

s:
c

^ 0)

o
o
cn

CO

0)
4J

3 —

'

a

u a
10

1.1

o
o
cn

o
0)

IW «

a. II

V
* —

II

a,

<s
IS
rH

I^ cn

a II

cn

IS in
ro rH

cn

IS
rH in

I I

cn cn

II II

cn cn

- IS
cn s

(S
4J rH
C II

in
II

II

s:

<r ro
II II

II II

CM rH
II II

II II

s: s:

ITS

I

(0

0)

II M-l IM M-l U-l M-l

X: -rl -rl .H

B
B
rH
a cn

3
B
B
rH JJ

r-. a cn

cn

c
a

B
cn

(U
>.)

o
o
cn

3
O

(0 B
ina

C B
e U B
m 0) 0)

c B 4J .IJ (0 B
iH C O V4 >i

(0 ro D O 3 lu

ia jc T3 c m
u ••H B B B C
0) c o
>t C M M W -rt

(0 (0 Q< CU Ot (/)

l-l o ^ toa B in IX)

a V V V g
<o (0 O4 Ou CLs

U s
14^ U-l (A

U £ ji< ro --^ .r^ (X
c o V

Oi 0) <l> 0) 0)
kl a> <o »- to w to w

E J= M-l rH iH iH
10 o 0) 0) (1) 0)

« c

(Version 1.01 PAGE M-17

4.2.3 Comments on Style

Notice how the functionality of this program makes it

readable. You can find a feature quickly, and modify it with
confidence that the house won't fall in.

Note the use of the character pointer k in status. It is

used to compute for printing one of five possible health
messages, depending on the health of player p. The function
pft is used to print exactly 11 characters. Thus, from three

lines of code any one of five messages is printed.

Piranha Fish uses only standard and optional library
functions, and standard MCs. These are all furnished with
tiny-c. So if you can get tiny-c up, you've got this program
in the bag. If you use a plot function from your personal
library, dramatic improvements to this game are possible.

4.3 The Standard Library and PPS

PPS is defined in Chapter III. We give its code here,
including the standard library functions. This listing is in

"human-readable" form, i.e., with comments, indenting, and

long names. It's about 9000 bytes long. The machine-readable
version of this program was "crunched" to about 4000 bytes.

In general, programs should be written in a human-readable
style, then a crunched version produced if the situation
warrants it. This one clearly does.

a>

0)

<u

•V

0)

c

cn

•i-i

e
tn

c
as

u
P

3
C

(0

C

e
u
d)u
a>

x:p

o

o u « -
- o

tn u n
4J (0 o u
•rt £ ^ s
e u <s>

(A II c
C U II u
(0 <a u 3

J3 •^^ 4J

o >w a>

« 3\ a

(0

c

e
u
9)

<u

s:u

o
u

u

O
(0

U

0)

c

n Its u
0) j::

4-t

c
(0

u

t)

Li

(0

x:
u

w

c

E
0)

I-Ia
g

c
•iH

a
id

0)p

<S)

p

E
o
u

c >—

s
m ^

X)
to

u
(0 10

cc o

* to

C
u
3
P
0)

0)

o>
ITJ

•i-t

(0

u

4J

c
3

O
Q

oo

I

U
(0

o

0)

c

n
II

U
II

C>) rH —. 1-1

C
1-1

a
J3 rH

wJ3
(a
II

CN

II I

r-l II

rH

—'<a

to "H

+
rH
II

0)
to

4J -rl

c x:

c
<u

to

c

4J
<0

3
C

P
3

S C
II^ 3
rH *J
«^ 0)

• i3 U

CP
c
•rt

to

(0 (S

to ^
P
C »- rH
•iH (0 U
U JZ *i to

cu u c x:

« to

u

II

+
rH
II

i3
II

O rH

C

rH rH 3
I 4J
II i= 0)

rH ^ U

c

u

(0

m

n

c
•f-4

CL

c
m

0)

c

0)

c
(a

o ^

4-)

0)

m

•a
iH
10

(0

c c

D 3

N tS3

» »

II II

V V
10 10

to

0)

o
o
« iH

»-'« *
<o '— .—

.

(0 • •
«M fl) <

ID- II II

to ^ A A
4J u <a <o

to «^w
0) (0

Eh X: «M >4-l

* r-t\ (0

CO

c
u
D
4J
0)

o:

> c
(0

c o
-H 03

0) 0)

3 J=
iH 4J
«0

> to

to o
U JJ
3 to

•

Q) -O
I

0) c
+J O
c c
•rH

o to

p Id

c •

u

to

0)

c

<0

X
0)

0)
4J

o
10 to

u 0)

10 4-1

x: >i
o ^
U M-l

•i-t o

§0)
C E —

3 in ^
to C >— IS
4J J3
U 0) >
a> x: u
> 4-) (0 4J

c x: c

« « 3

c

3
4J

0)
u

A tS)

2"
I

^ +
S IS

v >

in ^ IS
V ^ -H
it £i \\

(S —'w ^ +
J< II 4) ^ IS J<^ r-t IM «—

II

4J S ••H > ^
c — x:

3
fH
<0

>

to
4J

3

Id

4J

c

t.1

(0

c
•<-l

ja •

o 0)
4J c

•iH

J3 E
<0

0> X
C 0)

to

4J

Si

U-l

o

u
0)

to

>-l

a>
4J

o
<o

(0

0)

Or» QJ

4J 4J

c
•rH to

c
•o U
0) 3
C 4J —

•

xyi 0)
.^4 D!
to IS S

II

II

U

II

II

O

+ I^ II

- to

I + + ea
to»^> \\ " it £x

it *i ^ oiii|w>j<:
»-iisui4Jto ^ w it E«

c a> (0 c o ^ o ^ 3 to c
u >>x:"Hjd sa)^i3 ciiu
3 C O »J «^rH>4-l|| .f^3
4J O 4J(0iHJ3-rH'-HO J£IS4J
a) u c x: II II js ii

— «)

> U o •'4 u to u ^ 1—.^ > u
« « 4-1

r-,W (0

0)

4J

O

c
•i-t

c
c

•t-t

(1)

^
0)

JZ
•

s d)

O J3
u

i
c

(U (0

CT«

d)

U c
c •1-1

•1-1 4->

4J

-D
0) C7>

c
c

•iH o
w

(0 jj
w

w •i-t

w
0) c
o t-t

• •

l-l

3
c r-l
>-4 (0

e >
u
dJ m
U 4-1

•i-l

0)

x: U)

p c
U

E 3
O 4J

0)

0) TJ
c C

(0

i-H

(0 (V

c
U] •H
•o

(U

ic « C

(S

>

C <U

u u
3 -rH

-U 3
<u cr

>

" X)
•H E

-.-V O 3
IS iH 4-) C

^ ^WjQ (OS
> <U

iH 01 «4-l W
(-I CTi Q<
c x:

l4

(0

c
o

(0

c
u
3

(0

c

4J

u
m

CO

CO

(0

4J

cy>

c
•H
4J

m
4J

w •

x:
CO o
a> JJ
jj (0

E

o
c c

<̂a
4J c ^
CO o ja

•H IS ^
«4-l IS "
CO x: m
0) u

as <0 to

a,e jz •'^ ^
E u
ou c

c

* «

C II

cr ^
o

c

3
4J

0)

U

II

(0

c
V

+
II

0) U
iH 3
•r-t 4J

5

c
•iH

x:

c
•rt CO

4J
CO c

(U 0)

JZ U

x:
U-l 2
o

O C
C 3
0) O
W M-l

U
3 C
o o
o
O IS
A

IJ c
CO

Vj »

u-i c
3

(U o

4-»

p
U o
o c

-a
c
3
O

c^ o CO

C (0

to -a£ c c
•P i.1 .H
Di 3 U-t

C -P
0) (1) lU

o • ^

C C I

•H •ft C
U-I -rH

C E ® •—

'

•H x: o ^
Wl 4-1 u IS T3
4J — C C
CO C C C --^

0) 4J -r^ -H U-l U-l

CO 1-H OJ iH iH
0) CO k-i

tM U-I m 4J m-l-'

o o U-I x: c x: c

Its

to

c
3
O

to

>,
m

r-H

ns

4J

X
<u
4J

3

4J
to

(CJ

U
m
x:
o

4J
to

U

CO

c

c
c
(0

o
CO

o
CM

* * *

X

TJ
C

C IS 'iH

U I-t

3 C II

4J V
0) 3 —«T5
ki 4J tS C

> 0)

S k4 4J U-I iH
II ^U-l r-i 11

V IS 0) -(- —

N

"O II rH 4J IS
C V (0

•rt C -tJ "-^ -U
U^ -1-4 IT} 0) U-I

•H i-H iH QJ
"-^ 4J -rt iH
U4 U-I c x:

.,H -r-l ^

o
cn

0) -u
(0 fJi

iH u
0) -H

0) 0)

o »-•

u o
3 C
(/} m

c •»->

0) tt) •

9)p
o
m

to

u
o

4J

o

i-t o J«J

•<-" 4J u
(0 (0 (0

C U-l^ Q) M
4J £
14-1 4-) « « «
Q) W\
iH -

s x: -P

C -U C

c ^
.pH O ^-s

C —
r-l fH

I iw I

C M -O
c

i-H * .1-1

+ V.U-1
C .-H

4J S +
+ C C
C U -M
"H D U-l
«_ 4J -
C <U -P

C ro

(0 +
O ^ C
to <s 'H
+ w
-H *J C
+ M-i cr

«D rH O

4J U.I >P
(0 ••H .H

0)

>
o
s

0)

4J

U)a
o

(0

m

c
•l-l

>
iH o
iH e
3
C

• Q)

4J O 4J
to

2" O >i
4J XJ

•1-4 (0

M
i-H O
3

• C U
Q>

0) X)
o — > e
4-1 S II O 3

S 2
ro J3

K «
+

C S
••H II

4J
n u (0

<o s c
0) x: jw! 0) II Wl

> o rH iH ^ 3
O -P 1 'tH

S 0) c II £
* o\ E

0)
4J

O
m
u

x:
o

4J
(0

i.1

«4-l

CO

c
u
3
4J

0)

U

0)

c

(0

a;

c
»
o
•o

)-l

o

a
3

ro
tH
II

(0 —

-

X)

O IS

c

0)

o
3
TJ
0) •

(£

c
• •1-1

e
(0

X
m 0)

• x:
o o u

(U
U-l 4J

0) o u
4J

o 0) u
m o (0

c x:
nj 0) u
x:
o)-l 4J

3 10

o 10

O o p-l

o
(0 o
0) x: 4J

o 4-1

c ^—

^

U
0) IS 0)— 4-)

u c c
3 •iH

o o
o x: a

4J

c
4J p
c o 3
3 IP 4J

o 0)

o X3 a

—. (0

10 s
(4-1 (N ^ C

•O (UP
(0 P U r-l 3
<U 10 S •H 4J

cx: >-• x: II x: 0)

U IP ^ P
* o

^ jQ (0

CM^ 0) P
•C 10

P .c
o

0)

> r-l

O XI

>
« o

o
o
iH

C ^ 0)

x:
4J - 4J

c c
- c

«0 «—\
s

o • •

* (0 "D— C OS Jb£ 3 k Oi
> O O >•

XI 00 O >P S C
» ».rH »

--^ U X2 O X5 O
ts ^ k •_ k

<U JD
(0 *x; p IS

ro 4J tt) ^ IS ro

> «0

01 c u
p s
(Q 4J

x: c c
o

«

p ^
<D U C
•C S 10

O O
c cn

x: p
o 3 « „
4-t 4Jw c
CO) c
3 P (0

o o
O .—

. CD

p
3
4J

tt)

p

CP
c
•iH

4J

4J

O
•a

op

c
0)

a
o

\

^ (4-1

o
O *M
rH O
JQ

•o
•0 c
u

a
o

.
>i

u
u
*

c
3

rH SI

4J (1)

6 e

- c

m

o

cU U
•-H 3
C -P
3 0)
« U

0) ^
kl r-l

0) I

,1^ II

^ s^ II w-i

0) Jl£ -r-t

c
u
3 j<:

•p +
0) rH
U (Q^ JJ
rH O

I
•-*

II

V rH

— 4J

M-4 O
•H 4J

4J

+
U
0) B
J= CP
> -H CN
II jQ I

0)

V4 O C
V O ^
J= H 3
5 « -U

4J
•pH /It

r*

m
0^

•pH ha w
rnWi

•H
1 1

La

V4

U

'

1 1 w
(—

•

Im rH • 1 1 /ft

cs m V*10 A diw 1 1+^
(0 4J
C 10 O *fH

rn 1

1

•fH _0 rnUi

J3

Q) (1) csp /-\w I-; c i-*

U-l U o 1 i D
r\

c
0) 0) O -tJ • (0

rH a »« -r* 0)
•fH <^ o rH c
U-l (S •iH

« 1 3
(0 o a) * 1 U

4J N \ 0) MH
0) •»H o u
(0 ^ to O 1

S) o cn u *
o ^ CO o ^ rH c ^ o ^
M g O U1 0) o u o
• O rH * u u u u
• U •1-1 CQ -tJ

• IM c •H * \ J-) u
S * 3 « c •H «
O ^ % \ 3 \ o
w s rH z

4J ^.H
c u x:
"H S 5

(V

s

O C
rH
jQ >^

(0

•c o
4J

0)

0) rH
4J -H
•fH UH
V4 0)

S -U
•iH

« k4\ »

c
3 rH

•P i-H

c re
•H 4J

o

4J

c

+

o
Li

Ô
I -U

O II

4J V g
g O

0) o w
g U MH
It] >M I

C ^ O
- 0) -u

CM rH II

^•H rH
U £
s ^

+ ^
tn g
ir> o

II u-i

rH *
^ gm o
in t.1

CM UH
A ^
rH U
>« II

•H

c c
u u
3 3
4J 4J
(V <U
u u

V A

+
rH rH
+ +

+
g
o
U

II

g
o
u

« «\ a: \

c c
U Ur-\

«£> 3 3 (0

4J 0) 0) O
•H V4 U -U
C ^
3 51 St C^ V A U
O ^ ^ 3

II «M UH 0)

< Jl£ •H -H U

>,

e
E

It <u

U' ES
1
1

IS L4 G&
IM r\

\J 01 11w II

C3U 4J C _0 II
11

C w fr^
VJ

w 4J "0 C fsi CO

fit 1—^ w
II
II 1

(0 ''"^

^ K to

rH P
4J C • W4 w 1— 1

1a c U 4J JJ IS U ro U 03 Li

0) XI c X X 4) eEm Lj V-i •'^ to w w (1) Itw II rH (X w
4-1 Q) c—1 (1) 4J 4J

>, 3 U) U-l C > (0 4J f \

c flj kl-l 4<J •-*

M 0) 3 3 rH
I—1 d)

^ CP est ft fl) to c 0)

1 \+^

C 3 C w
1 \

ft

0) C & JJ ft II *^ I ' ' 01 to •H U 0)

c O C «-l JJ 11
ft 1 C M c 4J CP ty 3 ,-, 4J

•f-l 4J rH E O (U CO O4 Oi pTN fl)W VI/ (0 4J B 4J
iH l-l (Q I \ f— p IIC II iH J3 10 u u n> B 0)

D U CL4J U U-l U <T3 fl3 ^ 4) d) U-l 0< OU U r-H rH 4J
4J ^ 4-1 a> 3 CT^ O 4) k« Mid IIr-l II

4J c
0) 0) c 4-) U-l CL O X) o u c 0) 0) •iH (0 ^* c z

0) c o c u s: e 4J C rH •a <H »< B 4J a
ka t.1 •H M a. 4J 3 * l-l] 10 l_,M - ^« rH 3 T3 *

k.1 O JH cr>2 * \ 0) rH CO rH 0) II II II II II II II (^« 3 \
Li ft D CU 4J « « c Lj II^ II ~ fc-t II II M II II II II ^» Su \ 0) «

« c -J \ II

<I)

(1) 'fH

C rH rH O4
U B 1 +

« « U) lU M-l M-l UH («H tP *4H Q.\ II II
4J

\ — '-\ 3
•r-4

rH
rH (D 11

II

11
II

II II U
0)

« ^ ca 0) 1 1 iH £ *^ *^ n (U 0) 0) 0) 0) 0) to

TD WD Sl C r*H II 3 rH (0 (0 to (0 to to to to 4J UH UH c
C "—SI Jj M ft Q) II

C fli IIk* Ul II iH rH iH rH iH rH rH U •H -rl •H
s o c 0) 0) 0) iH V n\ xJ?s w x* rH IS rH C iH 0) II

*iw f 1 '^ 0) 0) 0) 0) (U (0
0) D> C C 4J (1) 4-1 ^ o m II *fH r^ 4J 0) 0) 0)

c o >-i vj •<H m •P o c m rH •rl d) to (0 to to

U 3 •l-l U CXiiH CUr-t (0 iH 4J 0) u II S 4J iH ^
-s

II MH rH rH rH
Q) O 1-4 QiiH f-l rH rH 4J u —' m •iH •iH 01 .—. 0) 0) 0)

U U U U c .c c (0 to

P 4J 4J 4J (0 (0 4J ip (0 «J 4J o ar-i a rH
C C c ccxii^ccjsxrc 10

•fH -iH •r-t •l-l .f-l o o O O E

c

a
oU

(0

(0

•

•

•

c (1)

c •H c
i-H •tH iH •r-i

(0 4J rH
> c JJ

•iH c
c m Li <u c
<u iH Qu Li (V

Lj Li

0) 3 Li

3 c O
o • 0) 4J

t4H

rj

c o to O j»: l4-i c
(/) •i-t Li 0) (0 0)

kj a O Li 0) •

iH a + ha br ar ro ne nd

0) o a to o x: a •H

x: 4-1 •iH (S o It rH CP
4-)

Li
or Th St

IS
k< 4J k> 4J ro

(0 tn c to X a
c H u « •iH Li V4-I m MH (U A rH
•H u 1 3 \ I4H 3 •rl rH •rt c +

rH
(0 + IS O <1> n O ro o + c
e rs

i-l

Li

CU r-H n
4J Li rH

II

4J rH
II

4J
ne

^ m nj rH Li Li L< U 'D •rl

m > c > - <U T <U o c rH
<u + c 1 O II rH rH to x: 0) II

c rH « o O -H c 1 c + Li u en O
•tH .-i (0 \ c o c + •iH Li Jti •r(3 rH o c

> to 0) U
od II Od II O II Ll 0)

c - c + c a to Jtf rH rH J<: Ll as c
c o Li O 'rl » Li + 1

^ to O II
•rH

c Li iH O rH iH O to 3 Li Ji£ to W U Jd <u to L4 C rH
n C "

II (0 II to II II >w c O O. c o a o Ll O Ll

•rt o x: o U U o + Li II Li to

c

c 3 to 3 c
c V4-I ta o c 3 O C Li 3 0) U 3 U 0) L4 CO U U 4J u

tn a> U to 0) Oi 4J rH 3 M 3 rH 3 > 3 0) 3
iH II c II U c <U Li 4J V Li 4J O Ll 4J

c c (0 O •iH U 3 o OS (0 c UH x: a» cc ID c II x: (V UH 0)

•iH .fH > rH O rH S x: •rl •iH •r(^ ^ L4 •rH r-i Ll

« « o * o « rH
a r-.\ 14H rH c

0)

4) 4)

x: rH
4)

1

X) C
*

<S) 4) c
C

4) 'iH 4)

rH rH X2
4) •)-) 4J •

CO

<0 to X
rH 4) 4)

•4-J to 4J
4J

k-l CO rH
• (0 3

4)
4J T3 * *
0.) \ \
rH
<U to *

*\ iH
+

CO

4-) M-J

c 1

•H ^ CO

1—

1

rH 'rl

<D •

rH

> rH 4) 1

c (0 • C %
(0 n > to -n

rH
* 4J

to rH
4)

c
/II

^ •D to 4J n>
* C t3 X c

jz 4) 4) U
D»

4> 4)

i>i

(S)
tnUJ Q) C +

•
II s "iH rH 3 V-i

4) B 4)

C o rH iH •0 + *
•iH (/) rH
1—

i

kl

3 C
04 3 +

(/) u iH * -X rH
3 * \ ^ V-i + rH
O > C/i

/II
CSl CO (0 V-I +

••H V CO c iH ''^ X! k>l
"-^ U

> <D c II rH U 3 1—

1

UH
0) 1—

1

t—

1

C + 1—

1

' ~ ' ^ •0 * rH 1

1 1 I—

1

CS I—

1

> -U + > — -Q
Sm O rH c (1) (0 1 CO k-i + /It rH

c iH 4-J rH > 4) ki Qt 4) >
O Q) iH o (1) <0 ^ C 'rl C 1

4J •0 C O r-i •—
' 1—1 C ••H 1—

i

(—B •D
•iH E 1 1 /II 1 rH C rH 1 C

Wi u r-H 14-* -3 iH "-^ "D IS CD 4J * in 4-J /IIw
O II <D C II (S C/3 •0 (S II C CO \ U CO C C cr>

CO II O CO > li 11
II II

••H (0 UI 10 Q)
1 /iirH W

C S> fH <0 II
—V rH rH + rH C 1

o Q) (0 •0 o u c CN —

'

II J-l II •iH f-\GU
o (Q c ^ iH > (0 1—

1

c c E 4) V-l 4) rH UH V-i II

>>i ••H Ui f-H 0) 10 0) CO (C k>4 4) 3 C (0 to c II II Ui T5
3 r-i c > Ui JJ ""^ u >>i 3 C C V.I 'rl >•< V C
U C > •l-t 0) (D M-i iH J rH C 4)

o <D iH 0) c f—

t

to U CO <U rH 4) 4J MH 4) to rH CT>
tn <D O4 M ^ CO CA II II tn

II WJ V4

00 ^ H c c M-l iH 1-1 Q C c U-l UH rH m u m 3 UH u
•iH 0) •iH •iH 4) rH >M rH rH rH 'rl a

« rH
\i3 a

0)

4J

U <-\ .r* -r^

C >4-l

rH r-t (U

W •

o o

c

c
0)

• rH

X
(U X
U 0)

• 4-1

0) OJ rH
U C »•

(0 •H CM
o rH +
o W
r-t n 4J O

X w
a II

0) U
C 3
O

P 1
•U 1

• 0) c
cn 0) c

X ro r-H UJ w
a) « rH ^-^

\ II
•-»

X
U O

c SI 0) 4j a
0) -^ 4J 0) -

> rH
•rH U X — C 1

(T> X <u - S (0 ^
rH o o

J= 4J rH - a CO to

4J rH —V II

•iH II B * 3
n \ U

<-' + - rH 4J +
0) 0) II 1 m)H

c — cue x: a
•rH IS -H . (U

iH II rH IS rH X

<0 r-s 0) -U -U
CM > X X S (0 II c

U] v O <U (1) II U £ —• •rH

<u — a> g 4J 4-) II O — II

C II rH rH C rH 3 —' JSC

(0 OJ .J^ •H C ^ ^ (U B >-> rH
C V4H

Vl-I

o
c
0)

c

T5
C
(0

>H

o

3
O
4J rH —

.

0) -I- CO
m ll rH .

O <U

" W rH C
TJ l>4 I -H

C 3 Vh rH
3
O

o

c
3 3

O•K (0 UWh +
3 U

^ * C
ro u -H

•f rH Vh

CM II Q.
I II i=

O >H 4J \
CO o c
U U) 3
U O
3 O rH
U II

Ij ^•^ o w
O C 0)

u a 0) c
Ij w C 'H
3 UJ .H rH
O -H rH OU

T3
c
3
o

4J

o
z

a
3
O
II

(0a
0)

(0

rH

4J

Vh

(0

P

c
(U

>

c
m

(1)

c

X
(1)

c

o
z
•K\

o
4J

o
JQ

U
<0

B
ena
<u
(0

rH
-. 0)

0)

c

c
(U

u
3
o

4J

X
0)

u

c
(0 0) u

u c .c

« .c

CO

X
(1)p

o
p

0) •

4J to

m 4J

o X
O (1)

rH .P

to o
3 4J

o
•rH T3
> C
(u m
u

p
to ig

•H O
oP rH

rH
3 to

(0 .P
UH 'H
0) gQ 'H

rH
it 0)

rH II CM

O — <JJ

UH CM C
* '-^•rH

>H (U rHpen
Q<-H rH

rH 0)

P
X
<up

o

>.
p
a

u g

p
•H to

g <u
•H U
rH m
(U (V

•o
o

0)

rH rH
•O rH
•C 3
•H C
g

-a
o c

rH Z O
0) u

II \cn
-•

OJ —
4J rH \
•H + _4
g Vh
•H 4J

rH Oi S C9
0) II II II

•D IH II
—

4J -•^rH
0) o< u +
rH ^ .U U
•O 0) (X-P
•o c ^ o.
•rH •H Q) w
g rH c aj tJ

w.,H C 0)

0) ^ rH 'H U
CM .P OJ ^rH jQ
II (0 rH UH
U O 'H 'H
•pox:

p
X
0)

4J -P
• X

IH (U O
a; -P .P
•p
•H 0) 5
g -P 0)

•H (0 2
rH O
0) o «
-O rH \
0) ^
rH 0)

•o z
•O -P
•H .){ X
g \ 0)p
c o
•H 4J

rH -P rH
rH X +
3 0)^
Z -P -P

rH a
te - +
\ro 0)

+ C
0) -rH

c •-"

IS 'H
II rH 0)

>
U Oi o
p >a o^ g
<U II

C C rH
•rH 0) O

-.rH rH -P

g
II

c

X

+
w

r-t a
X

U 'O
fl} c
x:
u -ii: n
r-l

II 4J
O C »W

C
0)

«5
4J

0)

>
o
s

0)

u
0)

•ic

O rH
4-) I

c
U 0)

O
« O
U 4-1

3 -

"D
c

in o

» a
•D +

' C
3 a
ob C

0)

* i-H\ +
u
o
(0

1 3
O
+
u
a

II

U iH
O i2
CO a>

>
3 o
u e

4J

X
0)

p
op
I

id

o
(0

u
3
O
+

a

I

c
0)

iH
op
+
4J

X
0)
4J

c o

1-1 *
I

*J

C X

rH -P

o o

+
D fH
C i3
0) 0)

D> >

u E

II C
•O <I>

C rH
0) O

O

a "4

0)

c

•

c
• •1-4

p i-H

3
O

ew

iH c
•H
m cp •pH •

0)

0) 0) •o
> > o
o o o

s
t-l

•It * • u
0)

c
0) cn

>H 10

c C r-^ O
0) •H rH CO c

rH + kH >^

rH O 3 3
3 »• C O -P

O
c c

+ OJ

0) iH

• 0) -H c
0) CTIrH •H 4J

i-t p II rH 3
3 u o 1 CU
(0 (0 a c iH

0) + 0) a*
u 4J

X
U C
a-r^

*\
rH

V 0) ^rH 1

JC p >H 0)

4J 0) C CO
iH B CO rH C -H pH

4J O as •H rH II rH

c rH rH 3 U rH rH ^ +
•.-4 a> A Ou O O rH + rH 4)

c 0) + m + 0) 1 C
04 •rH C e Jh U "D C w -H

iH •H -P a 3 C -H C rH
« rH rH "rH w O 0) iH -H 4J

\ 0) + rH IW rH II 0^ *rH CO

c 0) + •Q >-« O <1) rH «5

o C T3 •-» <u o U C +
•H c - > CO a-H U II

rH to rH 0) c c O l-i II rH O 0)

rH ^ 8 g 3 T3 CO C
CO >H •-'

II o i 3 ^ O C rH Jh -H

0) 0) 0) U B -P rH •—

'

0) 13 3 rH
c (0 P C a CO 0) C 0) 01 0) O 4-1

•r-l c IH -rH a iH "-^ CO O > — CO

l-i M <U rH UH <4-l rH u o u <a

a, 10 rH r-1 'H 0) a E arH
« c

3
iH
O
c

0)

c

4J

c
0)

3
o
4J
3
O

rcj

CO
4J

O
«0
UH

CO

0)

>
•H
o
«

(1)

c
a

CO V-i

c <u

rH I

SI I

- I

CO

u
3_ o
rH

•o -

C rH
0) *

a u
a^-i
(0

x: 4J
4J c

.c

o

CO

a »H

o
•« CO

O lu

I

CO

u
3
O

C 3 Li rH
0) O (D II

U
(0

II j= CO i::

CO o o
W <4-l C rH
3 II m II

O O iH o
•H arH UH J2 rH MH

(0

>

U IS
10 II

JZ A
O
4J .H
3 I

o c
iH ro s
V I—I s

rH
•H II d.
+ W
U •«

*w C -
11 «0 V
O rH -

^ Vj

(0

(U (U £
rH 1-4 O
•H -H

^ » a

c

o
T3

o

u
3
o

>
o
s c

^
« o

C
0)

CT>

O
U
a
+
u
a
u
O
U]

3
O
+
u
a

oo
CVJ

>

II

II

>
iH

C <4-l

nj ^-^

> rH
«. m

rH > rH
+ + +
0) O ^CCS
.»H aj w
rH C rH

g rH >
3 II II

C O
C S

Q) 0) «—
W C rH
rH "H ro

0) rH >

c (s
c ^
ro rH

>
I

o
c

U) 0)

U C
3 -H ^
o
II II

o
O C
u) 0)

U C -H
3 •'H rH
O rH O.

V)

<D

c

3

O
0)

U
3
O

U)

0)

>
o
S —' c

« a\ 3

ro

>
II

(0

0) rH
C i3
•iH ^
rH IS

11

•» A
rH ^ —

.

II rH rH
(0 ro

I

(U > CO

C - Q)

'-^ •'H rH C
iH rH + -rt

0) rH
rH S C II

ro II 'H 0)

> II
•-• 0)

c
W rH g -H
0) ^ 3 rH rH
C 0) C
•H C «^ W
^ .H OJ 0)

rH 0) rH C

rH J3 rH
0) ^ O4

0)

c

c

>
•rl

O

c
0)

o

a
+
as

rH
a Iw o
c c
C 0)

ro C

U
O '-^-^rH
W rH S +
U O
3 rH rH S CO rH rH
O II ^ II II

^
4J O r-i U O V>

a> c c II o c 0)

> OJ ^ w <u c
o c S c -H
S O '-H 3 "H rH

*J t-i r-i O rH
« O

CO
+J

O
ro

UH

(U

E
O
CO

c —
•rl

W CO

04 -tJ

o
« ro

O
C r-H

C CO

•rl ro

0)

C T3
C

C
0)

o
u

0} a
u

U Qi
CXrH S

B
C C rH

CL CL Ou
C C

c
Q)

0>
O
U
a
II

u
o
(/)

u
3
O
<-»

TJ rH

C
Q)

o r^ rH
u S +

B
A n rH CU

—> ij iH a
• iH O * rH

B iH W .-H B +
•• Wi 1

U Zi u 0) c
a o o a <u

o
u o
a C -"H D u

CO cu
c {J> + B • +
o O (SI (0 u
H una CU Ou
4J i_j (1)

(0 • + O c
o V4 to a +
•iH m r-l a I- >- ON a c
rH II + * 3 jC o> cu •iH c
Ou II p-l o U II (0 •rH

Cu V 0) c II x: (U rH
(0 (1) c 0) s c rH

c •H P-) C V 3 •H 0)

c •H iH iH 'M u o UH rH
<0 iH pH II rH O O •rl

iH 0) - W II B —' u »0 UH

u 0) c u Wi o c U (1> 9) t—' 'O
0) ._. 0) c U 3 C rH u ^ to •0
p iH iH (DUO) CU 0) UH r-H nj C 0)

c rH iH 0)

u
-s

U *M "H B 14H C II

r-, £ -r* rH B •rl

« St
rHa cu

CM

rH

CO
rH C

(I)

•D
C
0)

CP a
• +

CU rH a
+ •r<

u U-l rH
cu +

•0

rH a
+

4J

CU +
^ ^ to U 0)

A.1-M C
u •rt

c m rH

c 0) C UH
CP 3 (U

3 ••« rH rH
4J U U B rH •rt

0) a II B m V4H

II 0) r-H 0)

•oca (0 U
(S C -H 0) •>H

V 0) rH •» 4J 4J to u
CP-tJ J>i •rl 3 P 5

to u
UH U (0 C CP m c
•r< arH a 4H a

I

PAGE 4-30 tiny-c OWNER'S MANUAL

4.3.2 Comments on Style

The library routines are clean, and fairly straightforward,
index requires study to understand. The clue is this: to get
a modicum of speed, at least the first byte had to be
matched at machine code speed, scann had the ability to do
this, so it was adopted, scann is a technically difficult
function to master; this is a good demonstration of that
fact. The problem was broken into two parts: match the first
byte and then test if the remaining bytes match. The second
part is done by the if (ceqn(. . .))

.

movebl, countch, and scann (and a few others) are examples
of wrapping an MC in a nice package, and tying a bow on it.
This should be done to all MCs . Sometimes a modest variation
can be made in the packaging, as in putchar, where nulls are
mapped to quotes before MC 1 is called. This is done to keep
the MCs "pure", while, at the same time, incorporating a
small variation in its predominant usage. Another function
could still use the MC without the variation, or with yet
another variation.

Students of software archeology will recognize the PPS code
as a product of evolution. Originally, the only way to move
the current line was with the functions nl and bl. The up,
down, and goto functions all calculated an appropriate
number of nls or bis and then did them. They worked, but
slowly. So goto was receded using scann; in fact, it was the
motivation for scann. Next, down was receded using scann,
making it fast also. But up still uses bl and is still slow.
A cleaner design now would be to eliminate nl and bl
altogether, and code up and down in terms of goto. But even
with this dichotomy of method, the code is well structured.
Most of the routines are quickly read and understood, locate
and change are (not surprisingly) the only difficult ones.

4.3.3 The Use of MC 11

A tiny-c program loaded via the loader is, by definition, a
LEVEL ZERO PROGRAM. Usually this is PPS, but it could be any
system-type program. When a program uses MC 11 to invoke
(not call) another program, the invoked program is given a
level one higher than the invoking program. Thus, when PPS
invokes an application, that application runs at level one.
An application is also allowed to use MC 11, creating levels
higher than one.

Version 1.01 PAGE 4-31

The principal need for this is in using PPS to program and

test new or modified PPSs . A working PPS is loaded and

started at level zero. An experimental PPS is loaded as a

level one application. It is edited, started and tested just

like any other application. When the level one experimental

PPS is running, it is preparing the text of still another

program, which, if started, runs at level two.

In tiny-c/8080, the global variable APPLVL contains the

current application level. An application can be stopped by

pressing the ESCAPE key. This terminates the program, and

causes the invoking MC 11 to return. The application level

is reduced by one. The error 99 is returned in FACTS. ESCAPE
only works to terminate applications. It cannot terminate a

level zero program. The choice of ASCII character that stops

an application can be changed. The global variable ESCAPE
contains the ASCII character that causes an application
stop. It can be changed to any value not used in programming
or for data (see Section 6.5.4.2).

tiny-c/11 also contains a global variable called APPLVL
which is incremented as MC 11 is entered, and decremented as

MC 11 is left. This variable can be examined by interrupt
routines to determine how to handle an interrupt.

4.4 Morse Code Generator

Do you have something on your computer that goes beep? For
example, a printer that beeps when it's sent ASCII BELL?

Some printers make a long continuous beep when sent several
BELLs

.

This program allows you to practice receiving individual
letters in Morse code, or to send a Morse code message. Type

> .practice

to practice. Answer the four questions. (The last seeds the

random number generator.) Then write down the letters beeped
to you in Morse code. At the end, compare your answers with
the ones displayed. Or have a friend type

>. morse "any message"

and listen to the message he is sending.

PAGE 4-32 tiny-c OWNER'S MANUAL

FIGURE 4-2

int SPEED
bell[

MC 1002
MC 7,1
int k
while{ (k=k+l)<3) []

MC 1003
]

lots[
while(l)bell

]

dot[
bell
pause

]

dash [

bell; bell; bell; pause
]

pause

[

int k
while((k=k+l)<SPEED) []

]

space

[

int r

while((r=r+l)<20) []

]

letter char c [

pause
int k
while ((k=k+l)<SPEED) pause
if (c=='a') [dot;dash]
else if (c=='b') [dash;dot;dot;dot]
else if (c=='c') [dash;dot;dash;dot]
else if (c=='d') [dash;dot;dot]
else if (c== ' e') dot
else if (c=='f •) [dot;dot ;dash;dot]
else if (c=='g') [dash;dash;dot]
else if (c=='h') [dot;dot ;dot ;dot]
else if (c==' i'

) [dot;dot]
else if (c==' j'

) [dot;dash;dash;dash]
else if (c=='k') [dash;dot;dash]
else if (c=='l') [do t ; dash; dot ; dot]
else if (c== 'm') [dash;dash]

Version 1.01 PAGE 4-33

else if (c== •n'

)

[dash ;dot]
else if (c== •o'] [dash; dash; dash]
el se if (c== •p.] [dot;dash ; dash; dot]
else if (c== 'q'] [dash ; dash ; dot ; dash]

[dot ;dash ;dot]else if (c== •r']

else if (c== •s'
]
[dot;dot ;dot]

else if (c== • t'
]
dash

else if (c== •u'
1
[dot;dot ;dash]

el se if {c=» •v' [dot;dot ; dot ; dash]
else if (c== •w' [dot;dash ;dash]
el se if (c== 'x' [dash ; dot ; dot ; dash]
el se if (c== •y 1 [dash;dot;dash;dash]
else if (c== •z' [dash ; dash; dot ; dot]
else if (c== 1 1

1
[pause ;pause ;pause]

]

morse char s(0) [

SPEED=12
while(s(0))

[

letter s(0)
s=s+l

]

]

practice [

char c

int k,n,r,rl
ps"how many letters'
k=gn
ps"how many repeats"
r=gn
ps "speed"
SPEED=gn
ps "seed"
seed=last=gn
while((n=n+l)<=k)

[

c= random 'a' ,
'
z'

rl=0
while((rl=rl+l)<=r) letter c
letter '

'

putchar c; putchar '
'

]

]

End of FIGURE 4-2

PAGE 4-34 tiny-c OWNER'S MANUAL

4.4.1 Comments on Style

You may have to replace dot and dash to conform to different
hardware. You may also have to experiment awhile to get the
timing correct. In bell, (which you may have to replace),
two private MCs are used. 1002 enables the printer, and 1003
disables it. The MC 7,1 transmits ASCII BELL. Thus, nothing
goes to the printer except BELLs. SPEED is set to a default
value in line two of function morse. A lower value causes
faster code generation.

4.5 A Tape-to-Printer Copy Utility

A handy utility is one that reads a file from a cassette or
disk, and prints it. One would think that this is ordinarily
an assembly language job. But here, written almost entirely
in tiny-c, is the utility used to print Appendix A. The only
parts not in tiny-c are two private MCs: 1002 enables the
printer, and 1003 disables it.

The system for which this utility was written has a 300 baud
printer and a 2400 baud cassette recorder. They both use the
same USART, so only one device can be enabled at a time.
This utility conforms to that restriction. It opens the
file, reads one block of up to 256 bytes, and closes the
file, again freeing the USART. Then it opens the printer,
prints the block, and closes the printer, thus freeing the
USART for use on the file.

3

9
I- ^ t
(5 2 \n

h3"

(V-

•r

Version 1.01 PAGE H-35

FIGURE 4-3

/* Copies a file from cassette to printer,
pfile char naine(0) [

char a(256)
int 1 en, err
while (1)

[

err=fopen (1 ,naine, 0, 1) /* Open to read a block,
if (err)

[

pi "open err";pn err
return

]

len=fread (a , 1)
fclose (1

)

if (len<0) [

if(len == -1) tpl" readblock err";pn len]
return

]

p>open /* Open the printer.
pf t (a ,a+len-l

)

pclose
]

]

popen[MC 1002]
pclose[MC 1003]

End of FIGURE 4-3

4.6 TV Graphics Functions

There is a variety of devices available for plotting on a TV
screen. Generally, they divide the screen into a rectangular
grid and allow selective "painting" or "erasing" of any cell
in the grid. Some provide for only black or white cells and
some allow up to 16 colors. The tiny-c library does not
include TV graphics functions because they are
device-dependent

.

PAGE 4-36 tiny-c OWNER'S MANUAL

Here are two function specifications for black and white TV
graphics, but easily modified for color. We assume the
device has R rows and C columns of cells. The rows are
numbered top down from to R-1, the columns left to right
from to C-1

.

clean
The screen is erased.

plot int row, col, onoff
Tests if row and col designate an onscreen spot
(i.e., 0<=row < R, and 0<=col < C) . If this is NOT
true, plot takes no action, and returns a 1. If it is
true, and if onoff is nonzero, the spot designated by
row and col is "painted" white or turned on; if onoff
is zero, the spot is "painted" black or turned off.
In either case, plot returns a 0.

The definition of plot can be ext : to color grid cells
by giving meanings to differ e.': nonzero values of onoff.
Note also that this definition requires the plot function to
accept ANY value for row and col, even one wildly
off-screen, plot cannot abort or modify a random memory byte
just because row and col are off the screen. It simply plots
nothing and returns a 1

.

The next program demonstrates the use of plot.

4.6.1 Meteor Shower

Meteor shower is a graphic display program consisting of a
main program called "star" and a function called "shoot",
star queries the user for a seed for random, and the number
of fixed and of shooting stars. The first while statement
puts down the field of fixed stars. The second while state-
ment causes a series of shooting stars to cross the screen.
Most of the work is done by the function shoot, which puts
one shooting star across the screen. It chooses a random
entry point along the top edge, but not too close to the
corner. It finds its angle of descent by setting delta at
random, delta is the amount of horizontal motion for each
vertical step, delta ranges from -3 to +3, and it results in
a size between and 4. This is skewed to favor small sizes

Version 1.01 PAGE

by multiplying two random numbers together. The while

statement in shoot causes the motion. It repeatedly paints a

new head, and erases the tail. How far back the erasing is

done is determined by a variable called "big". For

increasing values of k, the spot at row k and column
start+delta*k is painted. This extends the shooting star

down one step. Then the spot painted big steps ago is

erased. The first big times this erasure is off screen, but

that does no harm. When the erasure is off screen and k is

larger than big, then the shooting star has completely
traversed the screen. This causes a return, which leaves

both the while, and shoot itself.

Notice that if a shooting star makes a direct hit on a fixed

star, the fixed star is erased simultaneously with the tail

of the shooting star.

For added interest, large shooting stars, called cruisers,
erase not only direct hits, but also any fixed stars they
merely approach. The last if statement does this with two

plots

.

<u

CM
A

>
o
z

c
o
w •

•rt o

< •X3

C
• (0

E
>. O

C
- ro

e ^
(0

u-i

O
O
U 0)

O4 CO

3

0) U]

3 0)

O -IJ

x:
(0 1.1

u
u to

o c
(U o
p e
0) 0) I—

s Q <

« « « -u

O
"D
C
(0

vo
'a-

e
o

B
pu

0] m
z s

ar ot

u 0) p
(U m JC

quin
sta

ng
)P1

01

w"
c

T3
•f-i

jj rs ot

c (U (D

X P sz
(U •iH x: 01 01
4J 0) V V
UI

(0 c >. 5s rH
Qi cr 0] c C + +

II >^ 0) 10 a:
10 4J p E E c II II

0] u C CP
0) (t> 0) CP » II

> r-l ji: II 01
"H II 0] X 0] X u

u m rH rH
s (U 4J (0 » 0) ••H S •r<

rH 0) c c 0] p 01 j: IIa 0) •rH •iH Oi 0) a 0]

P 4J

o c
o

. 01

•fH

^ «i

•rH

1

CP CP
•H

a: sun
1 1

« ^ JSC

(0p * *
rH (0 (0

rH OJ P 4J

rH rH
CM 0) 0)

+ -a 73
+ +

« -P rH rH
E + 1p m P 4J

rH 4-» V^l iH

£ <U 01 (0 (0

iH u + 01 01
« + CP

CO •rH

CM 1 P i3 CP D>
IH 1 •«H .rH

E IS E
1 1o E T3 01 ro

c (C C •— -•P A
<0 rtJ ^ CP -P 4J
iH Cr> C rH »H rH rH rH -H
II II

^ + -P (l>i3 rH iHa a
II -P rH II rH >*-l >4-l

p
kH

(0

P<0-PCP-PrH-Hje a.-rH -rH

C -P C •'H C <U J3
.r< 01 -ri J3 -fH 5

INSTALLATION GUIDE

OSS tiny-c for Atari Computers

OPTIMIZED SYSTEMS SOFTWARE

January, 1982

ATARI is a tradeMark of ATARI
tiny-c is a trademark of tiny-c Associates

TABLE OF CONTENTS

SECTION Page

! Introduction 1

2. Disk Contents 1

3» Starting and Running 1

4. PF'S Differences 2

5» Language Differences 3

6. MC and LIBRARY Differences ^

7* MsMory Map 8

8. Machine Language Routines 8

Page IG-1

I. INTRODUCnON

The OSS tiny-c for Atari Computers is an irtpleweritatatiori of the tiny-c language interpreter developed by

tiny-c Asscociates. tiny-c was originally developed for the 8080 Microprocessor arid has been since Migrated

to nany other Microconputers. The tiny-c owner's nariual (included with your OSS tiny-c pcakage) is the prine

soLirce of infornatiori aboijt the tiny-c language for all inpleneriatations. The Installation Guide coritains

infornatioTi which is specific to the OSS versiori of tiny-c for Atari computers.

Z. DISK CONTENTS

Your disk coritains two sets of files. The first set of files pertain to the OSS OS/A+ Operating System.

These files are DOS.SYS, DUFDSK.CO«, INn.CO«» HELP.COM, C0PY.COM, SYSEQU.ASM, and RS232,0E:J. The OS/A+

User's MarHjal (included with your OSS tiny-c pacl<.3qe) describes OS/A+ and elucidates the usage of these

files. The second set of files pertains to tiny-c. These files ate TC.CCW, PPS.C, and LIST.C. The TC.COM file

is the tiny-c interpreter. The xxx.C files are tiny-c source programs.

3. STARTING and RUNNING

In order to rcn tiny-c, you wjst first insure that your Atari CoMPLiter is properly configijred. This

requires!

1) ^8t(of RAM installed.

2) Both the A and B ROM cartrdige slots to he ewpty.

3) An 810 disk, drive installed.

When your system is properly configijred, boot the tiny-c disk in the nornal Manner. The first Message that

will appear ori your screen is the OSS OS/A+ Message;

OSS OS/A+ - AATARI version 1.2

Copyright (c) 1981 OSS

D15[cusror]

The ne>d step is to load and execute the tiny-c interpreter. This is done by typing!

TCCreturn]

The tiny-c interpreter gree-

ting Message will theri appear!

HI TINY-C+ Version 1.1 m
Copyright (c) 1979 - TINY-C Associates

Copyright (c) 1981 - OSS

>Ccursgr]

Paqe IG-Z

The '>' is the tiny-c interpreter provt. The following list is the cofwwnds available to the interpreter?

.X exit the interpreter and return to OS/A+

.9 lir*. and run the loaded proqran

.r [filspec] load the Ctilespec] tiny-c prograw

The ,r cofwarrf should be used at this ti«e to load the Progran Preparation Systen (PFS). To do this,

enter?

.r DtPPS.CEreturn]

Note: All input to tiny-c is via the Atari screen editor, thus the riorMal edit features such as back,

arrow, delete, etc, are available.

Wien the PPS has been loaded (the > proMpt returns), begin executing PPS by entering:

,gCreturn]

The screen will theri be cleared and the tiny-c greeting nessage will appear as before - except that the

proMpt character will now be At this point you can begin to use PPS to enter and execute tiny-c

prograns.

MW^NING' - Any ti«e you hit RESET, your Machine will take you back to OS/A+. To get back into tiny-c, you

nust repeat the entire process of loading PPS and restarting it. Yoij will lose any prograw that way have been

in Mefiory before the RESET key was hit.

1. FfS DIFFERENCES

The OSS version of the tiny-c PPS has an expanded set of comands intencted to provide access to DOS, to

facilitate the use of the Atari Screen Editor, and wake the PPS generally easer to use.

File Load arid Save:

The loading and saving of tiny-c source prograjis prepared under PPS is accofiplished with the .r and .w

conwands, The coMHarid formats are:

«w [filespec]

r [filespec]

The [filespec] is the standard Atari DOS file specification for a disk file:

di:list.c

DKPPS.C

Di:«YPROG.C

Page IG-3

The [filespec] Must be specified in capital letters. The '.C appendage is recofwended tor all tiny-c

source proqraMS.

Statistics?

The origriial FfS './' statistics comand presents the infornation is a rather cryptic fornat. The OSS FfS

presents the infornation in a self e>5il3ri3tory wanner.

DOS ConHands:

The OSS Pf-S has two useful DOS type cow«3nds.

•f n Display the filenanes ori the disk Mhich is in drive n. If n is onitted, it will default

to 1.

.e tfilespec] Erase (delete) the giveri [filespecL

hodify Connand;

The OSS tiny-c interpreter gets its keyboard input frofi the powerful Atari Screeri Editor. The .« coMMand

has been added to PPS to facilitate the use of this screen editor. To use the .« comarrf;

- display the current line using the .p comand (see tiny-c User's Guide).

- Modify the line uising the edit keys.

- hit return

- enter .nCreturn].

The line will then be displayed as it was before the change, and then as it is rcw after wodification.

The current line will be the nodified line.

5. LANOIAGE DFFERENCES

The OSS tiny-c interpreter has been nodified to pernit the use of hexidecinal constants. This change was

nade to allow easy access to the nany and wonderful graphics and sound feati-ires of the Atari computer. A

hexideciwal constant nay be used anywhere an integer or character constant is used. The forn of a hexidecinal

constant is ihhWi. The indicates that the constant is hexidecinal. The W>Wi characters represerit a

string of one to four hexidecinal digits (0 through 9, and A throu^ F).

Error codes returned to tiny-c fro« the ATARI operating systen are single byte negative nunbers. The

tiny-c interpreter will extend these values to be a negative integer. The values that yoLi are used to seeing

are the positive forn of the signle byte value. For exanple, the error code i81 can be error 129 or error

-127. If you print the value in tiny-c you will see -127, To translate this value to the faniliar 129, you

nust add the (negative) error code to 256. If the variable 'errcode' contained the $81 error, then you should

print 'errcode+256'.

F'39e IGH

6. hC and LIBRARY DIFFERENCES

The OSS tiny-c HC routines and its associated library of tiny-c functions have a rwfiber of twdificatioris

and extensions fro« those 5ho«ri in the tiny-c User's Gciide. The entire OSS tiny-c library is presented below.

putchar char c

fXiis arte character onto the sceen via the EJ device,

getchar

Gets the rie>rt character fro« the currerit screen ir*ut line via the EJ device. The value returried by the

function is the character received. I«ple«ents #2.

pft char froM(0),to(fl)

Displays all characters fro« the 'fro«' pointer to arid including the 'to' pointer via the EI device. The

displayed string «ay contain zero or wany EOL ($9B) characters. The value returned is the total runber of

characters displayed. Irtplewents MC #13

gs char buff(O)

Reads the next input line fro« the EJ device. The EOL character is changed to a wll ($00) character.

The value retwried is the nunber of characters in the line excludirig tf« EOL. Irtplewents MC *1.

PS char bLiff(O)

Displays on the screen via the EJ driver the characters fro« the character pointed to by 'buff to (but

not incliiding) the first riull character encoLTitered. The value retijrned is always zero.

Pl char buff(O)

Writes an EOL to the screen via the EJ device, theri displays the string pointed to by 'bi.rff ' via the 'ps'

furctioTi.

nuM char birff(5); int value(O)

Converts the ATASCn rmfieral characters pointed to by 'buff to ari integer and places the integer in the

elenent pointed to by value. The conversiori ends when either 5 digits have been converted or a riormuneric

character is is ercountered.

Page IG-5

atoi char tH.iff(fl); int v3lue(0)

Converts the ATASCII numeral characters pointed to by 'buff to an integer and places the integer in the

elewent pointed to by value. The conversion will skip leading blanks and will recognize and inplefient plus

(+) and ninus (-) sigris.

itoa int nm', char buff(O)

Converts the integer 'nm' to an unsigned ATASCn decinal string and places the result in the character

elements starting at the address pointed toby 'buff . The ATASCII string will be terwinated with a null

byte. The value returned is the nuMber of digits in the number. Iflplefients HC #H.

htoa int nun} char buff(O)

Converts the integer 'nun' into an ATASCII he>;ideci«3l string and places the result in the character

elewents starting at the address pointed toby 'buff . The ATASCII string will be ternirated with a null

byte. The value returned is the nufiber of digits in the nunber and is always fo^ir. Inplewents MC #15

pn int nun

Displays the integer 'nun' on the screen via the E: driver. The nunber will be preceeded by a single blank

character.

gn

Gets a nuneric string fron the rie>d input line (via the E*. driver) and converts the m-Kiber to an integer.

The value returned is the integer read.

ceqn char strl(0),str2(0);int length

Conpares the character elenerits pointed to by 'strl' to the character elements pointed to by 'str2' for a

length of 'length' charactes. If all the elements are equal a true value (1) is return - otherwise a false

value (0) is returned.

index char strlj int IslJ char strZ; int ls2

Searches the first 'ls2' elements for 'str2' of the 'Isl' characters of 'strl'. If 'strl' is rot fotrd in

'str2' then a zero value is returned. If 'strl' is fourid in 'str2't then the value returned is the rnwber of

characters into 'st2' where the first character of 'stl' was found,

«ove char dest(0)>src(0)

hoves the source string 'src' to the destination string 'dest'. The nove ends after a null byte has been

noved.

Paqe IG-6

9C

Gets the next non-EOL character fro« the current input line on the screeri via the EJ device. The value

returned is the value of the character read.

Novebl char tirst(0)tlast(0)> int riu«

hoves the block of ftenory pointed to by 'first' and terninated ba the eleeient pointed to by 'last' up or

down in fwmry. If (nuM>0) then the block is noved up nm bytes higher (towards iFFFF) in wefwry, If (ni.in-;0)

then the block is Moved nuM bytes dowri in netwry. The fwve in either direction is ron-destructive.

I«ple«erits MC #7.

countch char first (O)»last(0)> c

Counts the nunber of tines the character 'c' appears in the block of fte«ory starting at 'first' and ending

at 'last'. The value returned is the coi.nt.

scam char first(0)»last(0),c; int courit(O)

Scans the block of nenory fro« 'first' to 'last' for the character 'c'. Each tine 'c' is found, the

integer pointed to by 'count' is decrenented by one. When count(fl)=0» or when last(O) is exanined, the scan

stops. The value returned is the nunber of characters scanned.

readfile char riane(0)tstart(0),end(0);int iocb

The file whose filespec (ie. "DtLIST.C") is pointed to by 'nane' is read into nenory starting at the

address pointed to by 'start' using the IOCB specified by 'icob'. The address pointed to by 'end' is the

upper Unit of the read. The value returned is the nunber of bytes read fron the file. In no case will nore

then (end-start+l) bytes be read. The functiori will open arid close the file.

writefile char n3ne(0),start(0),erid(0);int iocb

The data starting at the nenory address pointed to by 'start' and ending at the address pointed to by

'end' will be written to the file whose filespec (ie. "DJTEST.C") is pointed to by 'nane' using lOCE: »'ioch'.

The value returned is the total nc<nber of bytes written. This value shojld be (end-start+l). The function

will open the file (node 8) and close it.

fdel char n3ne(0)

The file whose filespec is pointed to by 'nane' will be deleted. IQCB ? is used. The value returned is

the conditim code returned by CIO.

flock char nane(fl)

The file whose filespec is pointed to by 'nane' will be locked. IOCB *7 is used . The value returned is

the conditiori code returned by CIO.

Page IG-7

fiinlock clwr ri3«e(0)

The file whose filespec is pointed to by 'nww' will be unlocked. lOCB #7 is used. The value returned is
the coTidition code returned by CIO.

finit char ri3f(e(0)

The disk drive whose filespec is pointed to by 'nawe' will be caused to perforn a disk fornat operation.
lOCB #7 is used. The value returned is the condition code returned by CIO.

fdir int n

The directory of the diskette in drive 'n' will be displayed upon the screen. lOCB #7 is used,

fopen int node; char naneCO); int 3u>5; int iocb

The file whose filespec is pointed to by 'naie' will be opened in the node specified by 'node' (input=^,
outpLit=8, input/output=12). The '3ux2' value will be placed in the IOCB auxiliary K cell. lOCE; I'iocb' will
be used. The value returned is the condition code returned by CIO. Note: if the nost significant byte of
'3UX2' is non-zero, tfwn the nost significant byte of 'auxZ' is used as the IOCB cownand byte rather then the
OPEN cofwand thus allowing the user to inpleftent device dependent ("HO") cwiMand calls. In either case, the
'Mode' value is placed in the IOCB auxiliary #1 cell. I(iple«er.ts MC #3.

fclose int iocb

The IOCB indicated by 'iocb' will be closed. The value returned is always zero.I«ple«ents MC #6.

fwrite char frofi(0),to(0);irit iocb

Data bytes starting at the ftewry location pointed at by the 'fron' pointer are written to the previously
opened file in IOCB »'iocb'. If the value of 'to' is non-zero, then (to-fron+l) bytes will be written
including all EOL characters. If the value of 'to' is zero, theri the write operation terninates after the
first EX character is writter., The value returned is the nunber of bytes written. If the value returned is
less then zero, then ari error has occured and the value is the error code returned by CIO. Inplenerits MC »5.

fread char fro«(0),to(0); int iocb

Data bytes are read froM the previously opened file in IOCB I'iocb' to the address starting at 'fron'. If
the value of 'to' is zero, then the read will terninate after the first EOL character is read. If the value
of 'to' is non-zero, then (to-froM+1) bytes will be read unless the end of file is encountered. In either
case, the value returned is the number of bytes actually read. If the value returned is less then zero, then
an error has occurred and the value is the error code returned by CIO. Iftplenents MC «

Page IG-8

dos

Tiny-c will pass control to OS/A+ via DOSVEC in location $0A. Iwplewents MC #10.

Mcall char 3dr(fl)Jint regs(O)

The Machine langtjage subrotitine located at 'adr' will be called via the 6502 JSR instnctiori. The 6502

registers will be loaded fro« the values pointed to by 'regs' before the call is nade. (regs(0)=ACU;

reg(l)=X; re9(2)=Y). Upon return fron the subroutine, the returned values in the 6502 registers will be

stuffed into their respective locations in 'regs'. The value returned will be flag bits in the P register

vpoTi return fro« the subroutine. Ifvlewents MC #12.

7. hEMCFY MAP

Zero Page $0080-$00Bl

OS/A+ $0700-llEF

User Memory $1F00-$A5FF

Interpreter $A60fl-$BBFF

Variables arid Registers

OS/A+ Operating Sastew

tiriy-c User Mewory Area

tiny-c Interpreter

The tiny-c interpreter configtjres the tiny-c User Area starting at the location pointed to by the Atari

system MEMLO vector (at i2E7). The Atari 850 driver routine (RS232.0BJ) will (if loaded) change MEMLO to

$25E2» thus naking the tiny-c user area swaller.

8. MACHINE LAJffiUAGE ROUTINES

The OSS tiny-c Source Package (available fro« OSS) has a detailed explanatiori of the tiny-c interpreter

and a copy of the interpreter in Machine readable forn. It is reccoMwerided that you obtain this package if
you wish to create special MC furctions. In lieu of this, you can use the mil functiori (MC H) to access
arfi user or systew nachine language subroutine. If you wish to do this, the rcwtines should be loaded at

MEMLO ($lF0fl or $25E2) and fEMLO adjusted above your routines before executing the interpreter.

The tiny-c interpreter is located just below the Atari screen Mewry. If you wish to use an Atari Graphics
Mode that will use over Ik of screen RAM, you Must relocate the screen .MeMory soMewhere below the tiny-c
interpreter. The way to do this is to set RAMTOP ($6A) to %M arid theri open the screen in the graphics Mode
you wish to iise.

ExaMple*.

9r7()

[

/I poke fmOP with m
char rawtop (0), int errcode

r3Mtop= i6A5 raMtop(0)=*A1

/I open screen (S:) ori lOCB »6 (Atari standard)

/« for read/write (12) with Mixed char/graphics (+16)

/« in Mode 7 graphics

/I equivalent to GR.7 in Atari BASIC and BASIC A+

errcode=fopen (12+16, "S:", 7, 6)

if (errcodeXO pn errcode+256

return errcode

]

