FIR®T AND FINEST

C/65
C/65
C/65
C/65
C/65

Systems Software for
Apple and Atari Computers

ptimized Systems Software, Inc. L

This Reference Manual and the prografn
C/65™ are Copyright ©1982
Optimized Systems Software, Inc.

OOPS ooPs o0PS ooPS QPSS ooPS

. Errata found in the C/65 manual |

UPPER CASE versus lower case
In a last minute effort to fix a bug having to do with 1lower case
global labels being improperly sent to the assembly file, we put in a
simplistic and not altogether desirable kludge: generally, lower cass
names are not allowed.

We promise that this state of events will not last very long. Watch
for our update announcements.

C/65 Manual, Page 4

The supposedly “Simple Example” on this page was a disaster! Several
typographic errors (and one misunderstanding) crept into it. Pleass
replace the entire example sequence with the following:

{p1:} MACSES

@ ‘ {EDIT)

TEXT

[TEXTMODE}

18 MAIN ()

20 $(.

30 PUTS("THIS IS A C/65 PROGRAM") ;
48 $)

58 $ASM D:IO.LIB

LIST #D:TEST.C

{ TEXTMODE }

DOsS

{D1:} C65 TEST.C TEST.A -T

{Dl:} MAC65 TEST.A E: TEST.COM -A
(D1:} TEST

Please note that we have also included a demo program and EXeCute file

on your master disk. Try listing, compiling, modifying, etc., thia

demo program. It 1includes a reasonable - “"ITOA" (Integer TO Ascii)
.conversion routine which you can "1lift" for other programs.

THE LIBRARIES

All the assembly language libraries on this disk are MAC/65 "SAVEQ"
files, NOT standard ASCII files. If you have MAC/65 (as over 98% of
you do), this is exactly what you want. If you are one of those brave
souls intending to convert the compiler output to run on other
assemblers, these files are useless. Unfortunately, there i3 not
enough room on the diskette to include both types of library files.

Pear not. If you really want or need the ASCII versions of theaa
files, simply return your master disk to us (after making a ‘copy, if
you desire) along with your license agreement and we will airmail you-a
disk with ASCII libraries instead.

P.S.: If you DO have MAC/65 but want an ASCII library anyway, simply
LOAD the various library files one at a time, following each LOAD with
a LIST to another disk.

a reference manual for

c/ 63

a small C language compiler for use with
Atari 409, Atari 009, and Apple 1L Computers

The programs, disks, and manuals compriaing
C/65 are Copyright {c) 1982 by
Optimized Systems Software, Inc.

and
LightSpeed Software

This manual is Copyriyht {c) 1982 by
Optimized Systems Softwarse, lInc., of
18379 Lansdale Avenue, Cupertino, CA

All rightas reserved. Reproduction or translation of

any part of this work beyond that permitted by sections

187 and 108 of the United States Copyright Act withaut
tha permission of the copyright owner is unlawful.

PREFACE

We realize that /65 is not the most sophisticated,
most complete, language on the wmarket today, but we
believe that the inherent power and flexibility chat it
exhibits within {its compact size are & good match for
the size and features of the machines it {s {atended
tor.

C/65 was authored by Sam Dillon and John Lowry, under
the company name of LightSpeed Software, based on the
Small C Compliler published in Dr. Dobb's Journal.
C/65 'is a hand-coded translation from C code to 6502
assembly language and is, as a result, a fast and easy
to use compiler.

TRADEMARKS

The following trademarked nanes are used in various
places within this manual, and credit is hereby given:

0S/A+, BASIC A+, MAC/6S, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apﬁio 11, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atari 49@, Acari 800, Atari Home Coumputers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

Chapter

Chapter

Chapter

Chapter

TABLE OP CONTENTS

1 ~= Iantroduction 1
1.1 What's in It 1
1.2 Whate not in i: 2
2 -~ Using C/6%]l
2.1 Simple Example 4
2.2 Source Form 4
-- Language Definition 5

ol Reserved WorAds S
2 User Comments 6
) General Form of a C/65 Program 7
.4 Compiler Controls 8
4.1 SINCLUDE 8
4.2 SDEF INE Q
-4.) $ASM 9
S Function Dafinition 10
.6 Data Declarations 13
.6.1 Scope of Var:ables 1]
6.2 C/65 Data Types 14
.6.3 Global Declarations 1%
6.4 l.ocal Data Declarations 17
6.5 Parameter Data Declarations 18
o7 Introduction to Statements 20
4 -- ESxpressions 21
4.1 Local or Global Variables Names 21
4.2 Conatants 22
4.3 Functions 23
4.4 Subscripted Variables 25
4.5 {~%raduction tu Operators 26
4.5.1 Unary Expression Operators 26
4.5.2 Binary Operators 28
4.5.] Comparision (perators 31
4.5.4 Operator Precedence 32
4.6 Complex Expressions & Statements 133

Chapter

Chapter

-= Statemente

Simple Statements

Compound Statamente

Keyword Statements
IP Statement
IP-ELSE Statement
ELSE [P Statement
WHILE Scatement
BREAK Statement
CONTINUE Statement
RETURN Statewent
NULL Statement

o e W) A e W) B
4 s s 6 0 e o »

[R Y N NV N

C/65 Libracry Functions
Standard Error Codes
Runtime Library Punctions

PUTCHAR
GETCUAR
1/0 Library Punctians
POPEN
orEN
PGETC
GETC
PPUTC
PUTC
READ
WRITE
FGETS
GETS
FPUTS
PUTS
FERROR
PEQF
pPcLose
CLOSE
EXIT
NOTE and POINT
XIQ
Graphics Library Functions

1 SRAPHICS

2 SETCOLOR

h] COLOR

4 PLOT

5

6

. .
o~ -

Ll el et el ol atiedial X KL L. X" T o

CONC VLW

@ o b e 8 & ® e & &+ & e o e 8 e » & »

DRAWTO

POSITION
Storaqe Allocator
1 ALLoC
.2 FREE

15
s
36
17
bl
13
40
42
43
44
45
46

47
49
59
51
52
53
54
56
57
58
59
69
61
62
64
65
66
67
68
69
70
71
72
73
76
78
79
a0
a1
82
83
84

86

‘81

N

-= Interfacing to Assembly lLanguage
Zaro Page & System Stack usage
Accessing Function Paramaters
Passing Values
Returning vValues
A Simple Zxample

89
9
91
9)
93
%4

CHAPTER 1. LNTRODUCT J1OM

B R R A L L P P T R

C/65 is & suybset of the C prograwming langquaye as
defined by Kernighan and Ritchie in the bouk, “The C
Programming Languaje®, published by Prentice-liall.

With & few cClearly noted exceptlions, pProyrams written
in C/65 are compllable without modification wunder

scandard C.

The C/b65 package comes with & runtime Llibrary, which
includes setandard-looking character input and output
functions, all of which are dJdescribed later in this
document . The output of the C/65% compiler 18 MAC/69
assembly language, which must be run through the MAC/63
assembler to produce & runnable object modules. le 18
possible for this to be Jone automatically. Since the
output is assembly languegs, it is easy tO write your
own assembly languauge routines that are compatible
with the code generated by the compller.

SECTION 1.1 WHAT'S IN IT

P L LR L LT P P L T T

Very brisfly, C/65 supports
- the basic data types CHAR and INT
- pointers to the basic types (*)
-~ one dimensional arrays of the basic types ([])

- the basic arithmetic, logical, and bit operations
tamiliar to C programmers

- simple source level chacacter substitution
(s0EFIMNE)

-~ file incluaion of C source code

- file inclusion of assembly language source code
(not compatible with standard C)

~ functions with perameters and local variables

- an L€ statement, with an optional slse clause

a while statemant

LS €

-~ break and continue statements
- a return statemeat, with en optional return value

- compound statements grouped by braces (although
'$(’' and '$)’ must be used instead of ‘(' and

‘1)
- separate compilation
- limited external declarations

SECTION 1.2 WHAT'S NOT IN IT

For eaperisnced C programmers, use of the following
from standard C will get you in trouble:

- long ints

- unsigned inte (but note that pointers to char will
do most of what you want hers)

- floats and doubles

-~ structures, unions and bit fields

- multi-dimensional srrays

- parameters to IDEPINE wmacros

- ¢+= and his brothers -=, *=, stc.

- for statemant

- do-while statement

~ switch statement

- &b, |1, unary |
There are other restrictions not listed here, but these
seem to be the major onas. Despite this, Cc/65 is
complete enough that one could write C/65 in itself,
space considerations aside. For various reasons, c/65

is written in assembly language, which makas it
extramely fast and quite semall.

.—2e-

CHAPTER 21 USING C/65

P N L L L L L LT T R P

Afre you a € hacker alresady? 0id the introduction
(sections 1.1 and 1.2 tell enough? Anxious to get
started? Here you go!

After using your favorite text editor to cresate & C
source file, enter the command to 08/A+s

C65 filenamel filename? [-T)
whers

filenamel is the name of the source file,

filenameZ is the name of the output file,

=T 4is an optional flag which tells C/63 to include
the C source text as comments Ln the assambler
output file.

Special bNotes

Ey is a valld filename for elither esource or output
files (or both)., Il.s., compiler ocutput can go directly
to the screen, Or you can even type in your C program
on the fly.

Asssmble the output file using MAC/6S. Consult your
MAC/6% refersnce manual for details of this operation.
A complete, start to finish, compilation and assembly
is shown in the next section.

NOTEs MAC/65 may be used to edit C source files |t
TEXTMODE is selected (via the TIXT command).

-—3--

2.1 SIMPLE EXAMPLE

The following 1is an example of a complete, start to
tinish, C/63 program edit, compile, assembly, and
.‘“n.l

NOTE:1 This example assumes you are working with an
unprotected version of the master disk which has had
MAC63.COM COPYed to {t. PLEAGE Aon't 40 this on your
mastar eystem diskl We purposely 4o not protect our
system disks so that you can keep safe, backup copies.

(Dl:] mACES
{ep1t)

TEXT .

[TEXTMODE]

18 MAIN ()

20 $(.

38 , PUTS({"\N THIS I8 A C/65 PROGRAM\K");
40 $

5@ JASM D110.LIB

LIST #D:CTEST.C .

(TexTHODE)

pos

(D1:) C65 TEST.C TEST.A -T

{D11]) MAC65 TEST.A DiTEST.COM ~-A
{D1:] 7EST

NOTE: The characters in brackets (thusly] are intended
to show you what the computer has put on the scresn.
For o:nnelc. the computer has "Dl:" on the screen, and
you type "MAC65". MAC/6%5 loads from disk and prompts
you with "EDIT"; you respond with "TEXT", and sQ on.

2.2 BOURCE FORM

In general, please note that the 1line numbers are
optional and that line boundaries are ignored except
for those at the end of compiler control statsments
(BASM, OINCLUDE, #DEFINE).

ccfe-

CHAPTER)1 LANGUAGE DEPINITION

- - . . . G - -

Thie chapter will begin an informal, top-down
discussion of C/65. In general, C is a simplietic
looking language; it achieves its popularity and power
from its modular approach to programming. By ites very
nature, C sncourages the user to bulld his/hes own

1ibrary of capabilities {l.s., functions).

3.1 RESKAVED WORDE

- D W 0™

Unlike many contemporary lanquages, C has very tew
*built in® statements and no predefined /0 cepability
at all. In fact, the complets list of C/65 keywords is

as follows:

BREAK
CHAR

RETURN
WHILE

These keywords are reserved for compiler use and wmay
NOT be used for any other purposa. Additionally, we
would like to recommend that tha C/65 user avoid the
following keywords, which constitute the rest of the
1ist used by standard C, {f compatibility with other C
compilere is desired.

auto case default do double
entry float for goto long
register short sizeot statlc setruct
awitch typsde!l union unsigned

SPECIAL NOTE: The current version of C/65 recognizes
keywords in UPPER CASE ONLY and is sensitive to case in
all words. We anticipate that future versions will
recognize keywords in both upper and lower case (or
perhaps even nmixed case). In the meantime, those
experienced in C who prefer the lower case keywards may
use SDEFINE, if desired, to redefine lower cass
versions (e.g.. $DEPINE int INT). See section 3.1 for
more information .on the J#DEFINE compiler control
directive.

——feu

3.2 USER COMMENTS

Teccsancseeecnne o

c/65 confaorms to the C standard for inclusion of usec
comments in C programs. Coammenta begin with che
chacacter pair */** and continue, ignoring line
noundaries, until the charactsr pair '*/' is tound.

Comments may be used anywhere in C, even in the niddle
of an sexpression or atatement, 80 they will not be
furcther discussed hereafter.

CAUTION: Comments are NOT nested by C.

EXAMPLE

/* this begins a comment

/* this does nothingl
then some more comments

/ which end with the

L]
this is NOT & comment
and will cause compilation
ecrocrs!

¢/
and that was too late...this
genecrates WmOLke eLrOCH.

/* & comment again...on one line */

S S,

3.3 GENERAL FORM OF A C/65 PROGRAM

- 1 2 e W > T B .

The outermost level of a C/65 progras may be :hbuqht af
as consisting of just THREK distinct types of elements,
which may be mized and repeated Ln any ocrder.

The elements of a C/65 program are:
Compiler Controla
Function Definitions
Global Daca Declarations

Each of these slements will be separately discussed in
the sections which follow, but a simple
{non-functional) example of each, used in the order
above, might be as followa:

IDEFINE char CHAR

square { num)} INT num ;
$(return (num®nua)s
$)

REXTERN char ¢ i

I JEO

3.4 COMPILER CONTROLS

@ C/63 compller recogniges certain compller control
directives which begin with a "¢#° in the firet coluamn.
Compiler controle do not DIRECTLY generate or affect
the compiled code and need not be considered part of
the formal language. Nevertheless, the specifications
of C do include the compiler controls. While C/63% does
not implement all the specified controls, it implements
rthree very useful controls, locluding one which is not
specified in etandard C. .

J.4.1 Source File Inclusion: $INCLUDE

forms $INCLUDE filename

purpose: requeste Llnclusion of the source code of
the specified file in the current
compilation. .

example:s $INCLUDE Di1STDIO.H

The JINCLUDE statement is most commonly used to include
"header (files"™ which define and/or implement various
standard functions, variables, etc.

NOTE: The filename sehould not be enclosed by or
preceded by any especial characters (in contrast to
otunda;d C, where it would be enclosed by “"..." or
€oaed).

CAUTIONs (JINCLUDE statements are NOT nestable. A file

which has been JSINCLUDEA may not iteelf contaln a
$INCLUDE compiler control directive.

3.4.2 Text Substitution: $0EFINE

form: . 10ZFINE anycharacters anyothesrcharacters

purpose: sllowe substitution of one character
string for another, throughout a compile

example: ADEPINE BEGIN §${
IDEFINE END §)

Thess examples allow the user to
redefine the C/6% block delmiters §{
and §$) to a form possibly more familier
looking.

The IDEFINE compiler control will cause tha compiler to
change all occurences of the firet glven string to the
second given string.

WOTE: Macro arguwents are NOT allowed as in etandard C.
C/6% simply performs a text subetitution.

3.4.3 Assemdbly Language Inclusion: #ASH

forms dASM filename

purpo.‘c includes the named assembly language
file (in place of the current line).

caveats #ASM is not a standard C directive.

examples #AEM D:110.LIB

Since the 058 products C/65 and MAC/65 do not yet
produce relocatable, linkable object code, some means
of including various library routines needs to be
p;ovldcd. §ASM is the means by which this is done in
€/65.

NOTE: C/65 implemente the #ASM directive by writing the
l1ine ™ .INCLUDE é¢filename” to the assembly language
output file, in s form compatible with MAC/65. Because
of this, the assembly language file cannot itself
contain a .INCLUDE directive. ALSO, if the asasemdler
used ie indeed MAC/65, the included file MUST be a file
SAVE4 under MAC/65 and may NOT be an ASCII format file.

- Y

SPECIAL MOTE: The libraries to be included via the $ASH
directive need NOT have Dbeen originelly written in
assembly language. In fact, a common way of performing
multiple module compiles with C/63 is to complile one
module (or several), go to MAC/635 and ENTER the C/65
assembly language output, SAVE the assembly language to
another file, and then #ASM tha SAVRA code.

1f doing compiles of very large (files, in fact, the
only way to assemble the aentire result might be to
break the C/63 source Lnto modules which may then be
$ASMed by a master module. The critical cestriction
here is that any one assembly language file output by
C/6% must be capable of fitting into MAC/6S5's editor
menory space so that it can then be BAVEd.

——lfm-

3.8 TURCTION DEFIMITIONS

Punctions are the largest building blocks of C. In
fact, the language supporte no other forws of callable
module. A program writtan in C is not in and of iteelt
callablel

There is a convention, however, that the function named
MAIN will receive control when the program is loaded
and run by the operating system. This MAIN function
must then setup and control the flow to the rest of the
program by, in turn, meking function calls.

In any case, we first need a format for function
definitions:

Punction Definition

P L P T Y L 2 T Y

Punction Declaration

Local Data Definition(s)
Statement{s)
$)

The character paire $(and §) are the block delimiters
of C/65, wsince the keyboard of Apple and Avari
computers cannot usually generate the { and)
characters which are used by standard C (but see
section 3.4.1 Lf you don't like those characters).

Local data definitions will be discussed in section
1.8, along with the global data deflnitions.
Statements will ba introduced in section 3.7, but the
subject is complex enough to require ite own chapter
(chapter 5, because before we can seriously discuss
statemants we must understand expressions, chapter 4).

The function declaration, however, needs explanation
now. In many ways, the C/6%5 function declarations are
significantly simpler and more restricted than those of
standard C. In fact the general form (s simply as
follows,

elle=

Punction Declaration
tunction name (opt_peraml , opt_peram? , ...)
declaration”of opt_param! ;
declaration_ "ot opt_p.tnn) '

LY

Punctions in C/65 are presumed to return INTs. If you
need to return something else (e.9., a pointer), simply
assign its returned value to & variable of the proper
type (see the example below).

There may be any number of parameters {including zero},
each of which is presumed to be an INT unless otherwise
declared. The form of a paremeter declaration Lis the
same as that of a local variable declaration, to be
discussed in section 3.6, but briefly we may state here
that a parameter may be of any standard C/6S variable
type.

As promised, then, here is an sxample of a function.
T™is routine will search a string of characters for s
digit and return the address of {(or & polnter to...same
thing) the first digit found:

looky (here) CHAR *here !
${ WHILE (*here » '9' | *here ¢ '@’)
++here
RETURN (here) &
§)

Several parts of this function need the explanaticns
which will follow ia subsequent chapters, but the
points to be made here are:

The variable 'here’ is a character pointer (or
character string) passed into ‘'looky' from the
calling function.

The function returns the updated value of 'here’,
the address of the digit. {Of course, this
function is flawed, in that it Xkeeps looking
forever for that digit, which it might not find.)

N Since C/65 beliaves that functions always return:
INT, the calling program could play it safe thusly:

CHAR *foundit
foundit = looky ("find a digit 1 2 3")

ewl2me

3.6 OATA DECLARATIONS

N L L LR P R

There are four places in C/65 where one or more data
declarations are legal, three of those places have
already been noted (the tourth will be discussed (n
Bection 5.2). The leqal places are:

GLOBAL VARIABLES
Outeide of any functions (at the global level):
any number at any place.

FUNCTION PARAMETERS

In & function declaration, after the right
parenthesia and before the left brace (and
matching name(s) with parameter names listed
between the parentheses).

LOCAL VARIABLES
In a function definition, after the left brace
and bstore the first statement(s).

LOCAL VARIABLES
In any compound statement, aftec the left brace
and before the first statement(s}).

Although thers are fundamental ditferances In the
implementation of the various types of varlables, the
user will see little lf any difference in usage or
form. However, one important 1lfference to be noted is
the scope of the various types of vaciables.

J.6.1 SCOPE OF VARIABLES

P L T

Global variables are known throughout & program (HOT
just & program module, in the case of separately
compiled modules). Function parameters ar»s known
throughout the function {in which they are declared.
Local variables are known within the block (delimited
by braces, whether or not function delimiting braces)
in which they are defined.

Uiven two variables of the same name, which must be
declared at differant “levels” (as levels ars given
below), thes "inner” variable will be known while the
Oouter one is temporarily forgotten.

“=]3--

Any data declaration which {s, at the global laevdl,
prefaced Dby the keyword EXTERN is presumsq to reter to
a name which will be defined IN ANOTHER MODULE of the
sane (asssembled) program. This means that, i{n any
complete program, each variable name should be declared
WITHOUT the keyword EXTERN one time and one time only!

Finally, the other important point to be noted is that
array declarations have a similar problem: the size of
an array must be defined once and only once. Thus, |t
is good practice to avoid putting an array size (a
constant) between the brackets when the EXTERN keyword
is used.

SPECIAL NOTE: The global name "A" is illegqal in C/65,
to avoid conflict with 6582 mnemonics which use "A" to
designate the accumulator.

]G

3.6.4 LOCAL DATA DECLARATIONS

P T PP TP YL L T UL L LY

All oacurrences of data declarations within a pair of
braces (rscall that C/65 uses ${ and $) in lieu of |
and]}) are presumed to be local declarations.

In C/65, local variables are allocated space on the
C/65 stack and “"live®” only as long as the functioa
defining them lives (i.e., until the function exits or
RETURNs). Access to local variables is thus somewhat
more complicated and slower than access to glabal
variables; and yet, through a quirk in the necessary
6502 implementation ‘of the lsnguage, an access to a
local variable actually requires less memory than a
similar global access.

Since all 1local variables can only be defined within
the anclosing block, there is no need for an ambiguous
arcray reference (thet {s, one which does not Jeclare
the constant size of the array). The program SHOULD
provide a sisze for each local array.

Incidentally, C/65 generates less code for local
variables which are contained within the first 127
bytes of local space (also known as AUTOmatic space in
standard C). It is therefore a good idea to place all
local arxay declaratiaons AFTER the non-array
declarations unless the array names are used
considerably more than the non-array names.

NOTE: The keyword EXTERN is ILLEGAL inside the body of
a function. A local variable may NOT be declared

EXTERN.

-—]7m

J.6.5 PARAMETER DATA DECLARATIONS

Function parsmeter variables, as described above, are
also allocated space within the C/6S stack (and see
chapter 7 for a description of exactly what part of the
stack is wused). In most respects, then, function
parameters are identical to locel veriables.

However, there Ls one important difference., having to
do with how C defines and uses pointers. Briefly, any
expression involving & pointer may be converted by the
C compiler to one involving an array reference (or vice
versa, a8 desired by the implementer). Section 4.4
will present more details on this concept, and
generally the substitution will be invisible to the
user. .

Nowhere, though, is this subtle point more strongly
felt than when function parametere are involved. To
fllustrates

anyfunction (buffer) CHAR *buffer
{s EXACTLY the same as
anyfunction { buffer) CHAR buffer(] :

And within ‘anyfunction’, the programmer could code

*({bufferti) 1 *buffer;
or, EXACTLY equivalently,
buffer[1] buffer{ @ s

NOTE THE IMPLICATIONS: the «calling function will
presumably pass the function a CHARacter array (which
might be a literal string, as in 3.5 above). Wwhat is
actually passed, though, is the ADDRESS of the array.
Thus, the use of the pointer ('*buffer’, etc., above)
{s a better visualiczation of what actually occurs. BUT
the user who prefers to think in terms of arraye \le
encouraged to do 80: the compiler literally cannot see
the difference.

Finally, note that parameter arrsys should not have a
size defined (there ahould be no constant between the
sbrackets), since no array is actually allocated. (A
not uncommon practice, incidentally, (s to passs a
function not only the array--via i:s address--but also,
a8 a separate parameter, the acray's size.)

Ul P

SIDELIGHT: Though not {mmedietely obviocus, all the
above taken as & whole suggeats that a usage of
‘arcayname’ in equivalent to a usage of
‘4 arrayname(3])*' (that is, 'the address of the zerceth
element of arrayname). Indeed, this is true, and it is
perfectly legal in C to use either of the following
forms:

given:
CHAR bufter(500]

then:
callfunction(buffer) ,
is the same asm:
callfunction(& buffer (0)) :

Note: ‘&' is the ‘address-of' operator. See section
4.5.1 for clarification.

-nl19ew

.

2.7 Introduction to Statemants

O L L L o T R R

~

Just as functions are the building blocks of <
programs, 8O are statements the building blocks of
functions. {f you are new to C and’or other block
structured lanquages (e.g., if you are only familiar
with BASIC or PILOT or similar simple languages),
statements may bas the most familisr looking part of
C/65. After all, most languages provide for statements
similar to this:

total = total + pewamount ;

And perhaps the semicolon looks foreign to you, but at
least it looks “"right”. S0 it ts with most C/65
statements:; they "look right" (well...maybe almoat
right?) to most programmers. .

EXCEPT. There always has to be a catch. The catch {n
C. is that there are 30 few statement types. The C
novice almost always asks, “3dut how do I do
Input/Output?” And the anewer is, simply, "With
functions.” The LANGUAGE DEFINITION of C dJdoes not
actually include a specification of ANY input/output
capablilities whatsoever. Andl vyet, if you examine
chapter 6, you will find a rich arcvay nf 1/0 functions
defined {(with definitions virtually ilentical to those
used on UNIX). BUT...the real bYeauty of C is that, if
you don‘t like what we give you, you can write your own
functions.

And this applies to all sspects of ~he language: if you
don't find a statement to do ~hat you want, write &
function which will (using the staz:mente which are
provided, of course). Then, Iny-ime you nesd such a
statement, use your function.

Chapter 35 presents a fairly ~omplete view of the
various types of state~ruts, Hut let s Efinish this
section by simply no%ina =hat wny expression ({ncluding
an assignment, Of couise' nay Y@ used as 4 Jtatement,
any function may be usnd 18 a statement, and any group
of statements may be Combin:l Lnto a8 single statement.
Th.s is ALL in addition *) tit Xeywdrd statements (IF,
WHILE, etc.) which ara pa-~+2 to C/65.

.Chapter 4, ‘EXPRESGKONS

Expressions are the building blocks of C statements.
In poisnt of fact, an expression is a valid stetement in
C, whether it be an assignment statement or not. This
is not surprising, since an expression may contain one
or more function calle and/or may perform variable
incrementing or decrementing, all of which may alter
the values of one or more C variables.

When used with the varfous C keywords, sxpressions are
bullt {nto all the statement types recognigzed by C/65.

Expressions are bullt “"from the inside out”. Rather
than give a formal definition (e.g., & Backus-Naur
listing) of the various expression forms, we will
present the components of expressions in a “"bottom up”
order.,

4.1 Local or global variable names:

Any name previously declared as a local varisble,
parameter, or global variable may be used, by itself,
as an expraesaion.

Remenber, names are significant to 8 characters, must
begin with an alphabetic character, and case ie
presscvaed.

EXAMPLE s

EXTERN CHAR ®*nama ;
INT globalint

anyfunction{ thisisa)

INT thisisa ;

$(INT localint ;

/* atter the above declarations,
all the following are valid
expressions: */

localint)

name !

thisisa ;

6 globalinfallible

/* note that this last is the

same as 'globalint’ since only

eight characters are used */

-2]le-

4.2 Constants

Recogniszed constant forms are as follows:
« decimal numbers, in the range allowed by C/65

- one or two ascii characters enclosed in eingle
quotes ('),
R.g9.,

l., .‘b.c
Standard C escape sequences are also recognized.

They ares
‘\n' -~ newline
‘\b' «« backspsce
‘\t’ -« tab char
‘\aan' -- three octal digite
{e.g., \084 is control-D)
‘\@xhh' == two hex digits
{(e.g., \0xd84 is also control-D)

- a -trtng of ascli characters inside of doudble
quotes (°).
B.g., "this i{s & string”.

As in standard C, the value aof a string constant
is the address of the tirsc character.
Bucceeding characters ars stored sequentially
and are teminated with an ascii nul (zero

byte). R

The escape sesquences defined above for character
constants also work in string constantes.
e.g., "\nlinel\nline2*

NOTBs Of course, an expression consisting of
only a single contastant or variable name doesn't
"do" anything -- it Jjust alts there and
evaluates its navel.

“—22-e

4.3 Punctions

L e e e

Properly, a function usage (remember, we are here
talking about elemen.s of sxpressions) consistes of a
function name, (followed by a set of =zero ofr more
parameter expressions enclosed (n parentheses. 1n
standard C, @& pointer to a function may be used {n
place of the function name, and the call is then wmade
to the address contained in the pointer.

Since C€/65, at this time, has no means to declare that
something (e.g., a variable) is lndeed a pointer to a
function, the C/65 definition is simpler,

Functions are ANY expression followed by an open
parenthesis.

(An4, of «course, a name qualifies as an
expression, so the simplest standard C form |ls
satisfied by this definition.)

While this {s far from standard C, {f a program limits
iteelf to name(s) followed by the open parenthesls, it
will remain upward compstible with standard C.
Howaver, the looser definition allows such crudities
(or niceties, depending upon your viewpoint] aa:

18881), /* calls location 1800 decimal ¢/

array(2){) /* calls ruutine whose address ia
in the 3rd element of array
{ remember, C sero-indexes arrays)
./

-e2)--

The parameters to functions are simply lieted betwwen
the open parenthesis and & closing perenthests,
separated by commas, and are themselves expressionsl
(See how cleverly and easily we begin to build up to
more oomplicated expressions.)

EXANPLE:
int { g /* declare i an integer */

foobar{ 1) 7 /* a valid expression,
although {t does assume
_the existence of the
function 'fooba:z’.

*/

Parameters are pushed onto the C aystem stack in the
order llated (not important unless you are trying to
interface to C/65 from aseembly language, in which case
see Chapter 7).

A value is ALWAYB returned from a function call, but it

need not Dbe used and may be Junk (if the called
function neglects to return a specific value).

Y Y

4.4 Subscripted Variables

Arrays and polnters may be followed Dby an expresstion
enclosed in square brackets to access the elaments of
the given array (or elements of the presumed acray
pointed to by a pointer).

A convention {in standard C which {s carried over to
C/65 ts that any subsacripted varfable may aleso be
represented by {te pointer expression equivalant. That
is, the form

name [slement)
is functionally and properly equivaleat to
name + element .

The subtle implication here is that the “element”
number is “eized”. In C’'65, this means that {f “name”
18 a character paointer or cheracter array, the value of
“element” is added to the address of name (for arrays)
or the contents of name (for pointers) to achieve the
address of the slement asked for.

For integer pointers or {inteqger arrays, though, the
velue of "element”™ must be doubled besfore the addition
takes place, since integers occupy two bytes each.

If this point seems esoteric and unnecessary at this
time, we apologize. But the concept needs explanation,
since otherwise integer pointers can and will cause
problems. (And see also section 3.6.5 for related
discussion).

char vector(3@)
int *pointer i

vector{@]; /* tirst slement of array vectar */
vector(§+10); /* 18 is added to §, with the result
being used as the index ¢/

pointer[9]; /¢ the number stored in pointer is sdded
to 18 and the value at that location

in fetched ¢/
pointer+9; ‘* gxactly the sine as ~he lina ahovel */

\s mentioned, only sinqgle-guhscript scvays re allowed.

I L P

4.9

Introduction to Operators

- D D P - o

Hore

complex expressions may be constructed from the

primary expressions by using thres kinds of operators:
unary, binary, and comparison.

4.5.]1 Unary Expression Operatore:

- " P > T T DD R D T D WS D D A W T

Given an expression x,

negates x

Standard C definition: {f x is a pointer, refer
to the object pointed to by x. However, C/65
allows a looser definition: It x ie an
expression, refer to the (assumed) INT pointed
to by the expression. “Pointed to by x" means
that the value of x is a memory address and the
program is to operate on the contents of that
addrees (rather than the addresa Ltself).

EXAMPLE:
CHAR *pc ; /*®* pc is a CHARacter pointer®/
INT *pi ; /* pi is an INTegar pointer */
INT | 1 /* 1 is a simple integear ./

pc = pi = 1988 ; /* both now point to
, location 1089 */

pc =5 ; / loc’'n 1000 now contains § ./
(pc+l)=8 5 / and 1001 containe 8 */

1 = %pi ;3 /* { gets the INT at locatian
19988, which is 5 + 25648
(standard 6582 order) so
1 now equals 2033 */

{ = %1000 ; /* same effect as abovell */

*pi = 257 ; /¢ stores the INT 257 {nto
locations 1008-1081 +/
19A0=257 ; / ditto...in C/65 only */
pc = ‘A' ; / stores the CHAR value of
65 into location 19¢4...
does not affect 1001. */
100Q="'A' ; / NOT the samal| 3tores the
INT value 65 into loc'ns
1000 and 1001...carsful®/

.e2b~m

ex

X+d
+4x

REMEMBER: unless otherwise explicitly
declared, pointer expressions
are always assumed to point
to INTegersiili

evaluates to the address of x. Generaslly, this
operator may only be applied to variahles and
arrsy elements. Since most expressions have a
value only (since they "exist® only on the
system stack), trying to take thelr addresses
is illegal.

EXAMPLE: 61000 ; /* illegall ¢/

After all, just what memocry location
contains the constant 18887 Perhaps
none, petrhaps several? C says that it
can't know and won't try tqQ tell you.

EXAMPLE)
CHAR *p,c;
1f you do: p = ko
Then: *p is equivalent to ¢
But: tp is not squal to &c, and

&p {8 not equal to c, etc.

This sxample shows that there is no
relationship Dbetweean the addrees of p and the
address of c. Here we let p equal the address
of c. Then we can say that the object pointed
to by p {s equivalent to c. But the address of
p doss not egual the address of ¢ nor does the
address aof p equal to c.

The two forms of this operator refer to post
increment and pre increment respectively. Post
incremsnt means that the storage location x
will be incremented AFTER it is used. Pre
increment means that the storage location x
will be incremented BEFORE it 1is used. The
value that x will be incremented by (whether it
be post or pre) depends an what x was declared
as. If x was declared as anything other than a
poluter to INT then x++ and ++x will increment
the storage location of x by one. If x was
declared as & pointer to INT then x++ and +¢x
will increment the wstorage location of x by
two.

--27--

Aow

The two forms of this operator refer to post
decrement and pre decrement respectfully. Post
decrement means that the location x will be
decremented after it is used. Pre decrement
means that the storege location 3 will be
decremented before it is used. The valus that
% will be decremented by (whether it be post or
pre) depends on what x was declared as. 1If x
was declared as anything other than a pointer
to INT thenm x-~ will decremeat the storage
location of x by one. If x was declared as a
pointer to INT then =x-~ will decrement the
storage location of x by two. “

NOTE: Usages of +#+x and --x gsnerate less code
than usages of x¢+ and x--. 50 use the former
versions when nd order of operation is needed.

4.5.2 Binary Operatorse:

Binary operators take two expressions, operate on
them, and result in another expression.

Given expressions a and b,

at+d

a-b

a®b

a/®

alb

adds a to b.
subtracts b from a.

multiplies the signed a value to the signed b
value producing a signed result.

dividea the signed a value by the signed b
value producing a signed result.

The value returned for this operation is the
remainder of a divided by b (or a modulo b).

Example:s
(s v 2)

would produce the value 1. The division
perforned is wsigned.

CAUTION: The above 5 6pcr-tor- do not rscognize

overflows and underflows.

ee2B~=

‘>
.

alb gives the Ditwise inclusive or oOf a and b.

akdb

"Inclusive or” cen be defined as:¢ Given the
binary value of & and the binary value of b, Lf
either of the corresponding bite are a 1 thea
the resulting bit is a 1, otherwise the
reaulting bit s a 8. As shown below:

zinnplol
{s | 1277== 13

where 000909181 = 3
and PHd0B1LIe0 = |3

-

result 89001101 = 1]

gives the bitwise exclusive or of & and b.
“gxclusive or” can be defined as: 0diven the
binary value of & and the binary valuas of b, {f
both of the corresponding bits are the same
then the resulting bit {a & 3, otherwise the
resulting bit {s a 1. As shown belows

Examples
(5 ° 12) == 9

where 00803121 = 8§
and 00001108 =12

result AOSO10R1 = 9

gives tha hitwise and of a and b. A “bitwise
and” can be defined as: Given the binary value
of a and the binary value of b, 1f both of the
corresponding bits are a 1 then the resulting
bit is a 1, otherwise the resulting bit ias a @.
As shown below:

Example;

(5 & 12) an 4

where 200408101 = §
and 000011060 =)2

cesult O000001IU0 = 4
ew29--

a<<b shifts a arithmetically left b bitse
Example:
{7 ¢« 3) evaluates to 56
(8 << 3) evaluates to 64
a>’d shifte a arithmetically rigﬁ: b bite
Example:
{7 »> 1) evaluates to ¢
(8 »») evaluates to 1
NOTE: In the 2. shift operators above, any bit or
bites shifted too far left or right, out of

the CHAR or INT, will be lost as C d40es not
recognize the concept of a “carry bit".

a=b The assignment operator ' = ' can be used anywhere

a binary operator can bes used.

Example:

x[keke3] = a-(b=c/d)
This example performs 1} asasignments. b is set
to the value of c/d. Kk is set to k+3. The
array slement x (new value of k) is set to a
minus new value of b.

Example:

ashascsg

c is set to 8. Then b is set to ¢, i{.4., to @.
Then a is set to b, also 9.

~=3B~-

4.5.3 Comparision Opsrators:

0 o = > - - - - - - -

Comparison operators return a 1| 2 @ Dbased on .
Q“P.rl.on of tw: .'PI’.I.LO“.- A} X

result of a
returned |{f

the

sxpression esulting from -y,

Comparison is true, a # is raturwi 4f L1t 18 Calse.

Given the expressions a and h:

a==d Tests
al=b Tests
a<h Tests
&b Tests
a<asdb Tests

a>=bh Tasts

It

it a ie equal to I

for
for
tor
for

for

c

inequality

4 less than b

a4 greater thaw D

a less than o1 wqual to b

a greater than °.C equal to b

omparison invr.l7/ss a pointer, ,,

unsigned comparison {s =< formed. Others, sa,
a signed comparison resul"s.

Example:

int

P
1

pi

Pl

<
<

<

1,3, *pi.*p}

pi = | = ~19080 }' but C/6% ‘thirry -«

1~ as contalning a1
atdress of 55535 ..

j= 1000,

3 3 /* is te-.@...veturas 1 *
3 1 /* is fr.se...unsigned ~--...,
lookn like 55518 ¢« 1222
8Q et irns [} ./
pl } /' is t+ -.®...TtUrNS 1 .,

Y P

4.5.4 Operator Precedence:

-

The table below swmarizes the rules of precedence of
all operators. Operators on the ssme line have the
same precedence; rows are in order of decreasing
precedence, 8o for example, *, /, and % all have the
same precedance, which is higher than that of + and -,

|=osmcscmc e meenemcmaccaac e cemenanal|

| Operator |
Lo T
¢ 1 e <= 2 (pointar) & leadress]
B 2 S
v - TTTTTTTmmmTTTmTTena s
< -‘-----‘--j----.---------|
———- cemmeeememecccccecanann |

< <= > e |
e D D L L L L rapupap |

!
|
|
1
|
|
|
|
|
|
' L . |
|
|
|
|
|
|
|
|
]

- - S |
comesman R |

B I
ISP |
————mmemae S

¢ - |

DD |

@ NOTE: operators on these two lines associate right
to left); all other operators associate left to
right.

EXAMPLE
* p ++ is equivalent to
* { pt+)

*s q is equivalent to
* (s

q)
-e}2--

4.6 HAuilding Complex Expressions and Statements

0 o -~ e " o = o > 0 S = VS A D N P AR W B A

The various primary operators and operands presented
sbove way be combined in some very complex and exotic
ways to provide some sophisticated power to the (/6%
user. And, since any expression may be turned into a
C/65 statement by eimply appending a semicolon, we can
sasily expand the bullt in structuree of the languagae.

Bome of the more obviously useful atatement/expressions
may be grouped as follows:

Expressions which call functiones.
Bince <calling a function {nvokes all the
code of that function and all the code of
any function Lt in turn calls.

Expressions which perform aseignments.
Since we are changing program and system
variablea in hopefully meaningful ways.

., Expressions which perform incrementing or

decrementing.
Again, eince we are changing a system or
program location in a meaningful way.

EXAMPLES §
PUTC{ ¢) 1 /* call a function to
perform 1/0 */
1@ 3 * Kk /* calculate a new value
for a variable */
++counter ; /* count how many times
somathing happens */

But the real power of C becomes apparent when we start
combining all these capabjilities into single statements
and sequences of statements.

EXAMPLES

CHAR *ta, *from;
* Lo ++ = ¢ from ++ ;

/* moves a character from the location
pointed to Dby ‘from' to the
location polnted to by ‘'to’'; also
increments both ‘to' and ‘'from'
AFTER using each || ¢/

w=33e=

flag » ((c = GETC(channel)) >= '9') & (c <= '9*),

/®* gqets a character from the 1/0 file
specified by channel and assigns it
to the variable ¢. Checks to see
if the charscter s numeric (in the
range of ASCll ‘g’ to A
inclusive). It it te numeria,
assigns 1 to flag. 1If it is not
numeric, aseigns @ to flag. */

spaces = spaces + ((*buf++ = SETC(channel))w=l2),

/®* gets a character (rom the file and
stores it in a buffer at the
location pointed to by ‘buf’. 1t
the character i{s a space, then the
counter ‘spaces' is {incremented.
In any case, 'buf' {s incremented
to point to the next loc'n */

NUTE POR BASIC USERS ONLY:
Just to give you an idea of the power implicit here, we
present the BASIC A+ equivalents of the above examples:
‘ }. poke from,peek{to) s
from=from+l
to = to+l
2. get bdchannel,c
lag = (c >= ASC("0")) AND
(c <= AsSC("9"))
3. gqget f#channel,c
poke buf,c 1
buf = buf + 1
if c=32 then spaces = spaces+l

-=3)4--

CHAPTER 5: STATEMENTS

There are) kinds of C atatements: simple statements,
compound statements, and keyward statements.

$.1 SIMPLE STATEMENTS

L2 TE YT LY ST T Y Y

A simple statement is merely an szxpression followed by
a semicolon. That is, a simple statement has the form:

expression
Some examples Of a simple statement follow.

1) ¢ = 9,

2) ++buffer pointer;

3) PUTS ("a message”);

4) a = a ¢+ dolt{3,doocheck(7,d0(7)),d0(3}));
NOTE: An expression may or may not {involve an

assignment operation, as shown.

By definition, any place a simple statement is lagal
and/or needed in C, a compound statament is equally and
equivalently leqal and/or necessary.

-e35-~

5.2 COMPOUND STATEMENTS

- L -

Compound statements can be defined as any number of
statemcnts (of any kind, Including other compound
statements) inclosed in braces to form a aingle
statement.

(Remember, braces cannot be generated by the keyboard,
80 C/65 uses '$(' for the '(* and '$)’' for the ‘'}' of
standard C.)

Compound statements have the form:

${ statementl:
statement?;

-tu;;;cntN:
$)

An example of a compound statement:
$(INT a,b,c;

a=];
b= 2;
C = 3 ¢+ Db;
$)
NOTE: Variables may be declared at the beginning of any
campound statement as shown above. See also section 3.6

Of courss other statements can be used in compound

statements and some examples follow in the keyword
statement dafinition.

~-36--

5.3 KEYWORD STATEMENTS

B e T L X R

C is by nature a recursive langusge; hence it is not
surprising that the detfinition of ths ilanguage involves
recursive definitionas. Compound statements {last
section) are a perfact example of this: a compound
statement consists of a collection of statements any of
which might in turn be a compound statement, etc.

The keyword statements of C/65 bulld on this seame
concept; some of the keyword definitions reguire the
use Of a statement to complete their definition. And
what Xxind of statement can be wused thusly? Any
statement, of course, including a simple statement, a
compound statement (which consists of any number of
statements, stc.), or a keyword statement (which can be
of the same type as tha original astatement, thus
requiring yet snother statement, ad nauseum}. Perhaps
section 5.3.) givas the best example of this logic, in
the example of an ELSE [F structure.

$.3.1 IF statement:

- o Wy - W = W - -

The IF statement is used in decision making. It has
the form:

IP (expression) statement;

Here the expression is evaluated. if it {s non-zero
then the statement is executed, otherwise it is not.

EXAMPLE:

INT ¢
c » GETCHAR():
IF (c == 'a‘') PUTCHAR{c);

e

This wxample will get one charecter frum the keykuard.
1f the character is the letter "s" then it will put the
letter back ocat on the screen, otherwise it will do
nothing.

T,

5.3.2 IF-ELSE statement:

e IP-ELSE statement group is also used for decision
making. It hae the form:

IFr (expression}
stetementl;

EL8E
statement)

Here the expression s evaluated. If it is non-zero
then statementl is executed and control passes to after
statement2. If the expression evaluatss tOo xecro then
statement2 is snecuted and control continues
sequentially.

EXAMPLE ¢
SDEFINE Altnum °1°

$(
INT ¢
c = GETCHAR{),
IF (c == ‘')

PUTCHAR(AL fnum)
ELSE
) PUTCHAR(c) ¢
$

The word Alfpum gets defined as a constant, the
character ‘l°. The variable ¢ will be esqual to the
letter typed at the keyboard. If the letter typed in
was the letter "a" then the statement PUTCHAR{alfnum)y
will be exacuted putting the character 'l' Dback onto
the screen; otherwise the letter typed in will be
repeated on the ecreen, by the execution of the
statement following the ELSE.

Y P

$.3.2 (continued)

- - - - - - -

IP~ELSE statements can also be nested as shown below.
EXAMPLE:

3
INT ¢
¢ = GETCHAR():
IP (c »= ‘A'})
${ PUTCHAR('l'):

IF (c == 'B')
PUTCHAR('2*);
$)
ELSE
) PUTCHAR(cC)
$

Herse ¢ will equal a character typed in from the
Xeyboard, 1If the letter is grastar than the letter “A°
the number "1" will be printed on the screen. At the
same time If the letter is a "B" then the number "1°
snd the number "2" will be printed on the screen.
Otherwise the character input will be repeated on the
screen.

-=39-~

$5.3.6 COMTINUE statement:

dawa

The CONTINUE statement 1ie related to the BREAK
statement, but less often used. CONTINUE Causes the
next interation of the enclosing WHILE loop to Dbegin.
This means the test part of the WHILE loop will be
slecuted immediately. CONTINUE has the form:

COMTINUE;

EXAMPLE:
INT ¢

u7xut ({c = GETCHAR()) I= '2"')
$
IF (c == 'A’‘)
CONTINUE;
PUTCHAR(c) ;s

Here the WHILE loop will get characters from the
keyboard and write them back to the screen as long as
the latter "2" is not typed in. The CONTINUE statement
comes into play only when the letter "A" is typed in.
When the letter "A® is typed in tho CONTINUE statement
causes the control of the WHILE loop to go back and get
another character from the keyboard without printing
the lettar “A" on tha screen.

enldmm

5.3.7 RETURE statement:

P L P PR L T e Y

The return statement ie used to return control back to
It can also pass back values to the caller

the caller.
it they are nseded. The REZTURN statement has the form:
RETURM
or

RETURN expression;

EXAMPLE,

INT c,d4;
G @ QETCHAR():

IF (c 2e @) | (c <= '9*)
d = 1

ELSE
d = 9

RETURN(d) ¢

In this example c is equal to the character typed in
from the keyboard. If the character ls {n the rangs
8-9 then the variable 4 will be returned with a one in
it, otherwise 4 will be returned with s gero.

This example could be used vhen only numeric {input |{s
allowed from the keyboard. The program that called
this function would look at what was returned and {f it
wWas a Zero an error message could be printed on the
screen reminding the uger that only numeric entries are

allowed.

Ny

5.3.68 dull statement:

B @ "W ® "W E "D R E S -

The NULL etatement does nothing. It can sometimes be

ue " as a place holder in WHILE and IF statements.
It the form:

1

EXAMPLE s

INT ¢

WHILE ({c = GETCHAR()) I= °Z°*)
1? (c == 'A’)
PUTS("ALLRIGHT"))
ELSE
J

This example f{llustrates how the NULL statement (s used

as & place holder. Here as long as the letter "Z" is not
. lnput from the keyboard the WHILE loop will continue.

If the letter “A” is typed, the message ALLRIGUT gets,
printed on the screen. If the letter {s not an "A" then
nothing happens, but by putting the NULL statement (in
we have made it sasier to change the program {f later
we would like it to do something after the ELSE.

EXAMPLE
WHILE ((*buf++ = GETCHAR()) »>= 8);

In this example because all our data checking and
movement 1s done within the control part of the WHILE
loop, a NULL astatement aust be used because. the rules
of the WHILE statement specify it.

o

CHAPTER 6: C/63 LIBRARY FUNCTIONS

——_— - - - - P W P W W P e

C/65 comes with four libraries:

- & runtime library to provide the routines
called directly by the compller to do
arithmetic and logic.

- an I/0 library to provide low level input and
output functions.

- a simple graphics library, allowing only the
most fundamental graphics capabllities.

- a storage allocation 1library to provide a
dynamic storage allocation capability.

The runtime library is always necessary and is
automatically included by the compller. It also
contains the routines GETCHAR and PUTCHAR, 8o it may be
all that you need, including 1/0.

The 1/0 library Le only necessary {f you will perform
1/0 involving the oetandard C/65 functions listed andg
described in section 6.3. Similarly, the graphice
library functions are optional and are 1liasted and
dsscribed in section 6.4.

The etorage allocation 1library L{a only necessary if
calles will be made to ALLOC and FREE, as they are
described {n section 6.5.

1€ you use any of the routines of the C/6% 1/0,
graphics, and/or allocation libraries, it {e necessary
to include one or more of the following 1linss (as
appropriate) at the END of your C source code:

$ASM D:I10.LIA

$ASM DIGRAPHICS.LIB
$ASM DiALLOC.LIB

LY

6.2 RUNTIME LISRARY PWNCTIONS

The ~ “ime Library eupplied with C/€5 hase
buil. blocks needed by C/65 to create the
langu. . for your C programs. It is mostly
to the user and performs all the operstions

the basic
assembly
invisible
used 1{in

C/68, such as multiply, divide, stacking and many more.
The two functions that are vieible to the user, PUTCHAR

and GETCHAR are described below.

N Y. P

6.2.1 Runtime PFunction: PUTCHAR

P L L L L P R P TR LY L R L

formi
PUTCHIAR (c)
CHAR ¢

purpose:
PUTCHAR takes its argument and writes it

on the standard output.

arquments:
A single charactecr. I[f paesad An INT or
other non-ClIAR value, only the lesast
significant byte of tha argument (s
used.

returns:
INT: The value returned will either be

positive, indicating proper execution,
or negative indicating a standard error
code. See section 6.) for Information
about standard errors.

discussion)

Currently standard output ls the screen and cannot be.
redirsctead. 1t file independent 1[/0 is desired, we
recommend that the function PUTC be used.

-e5)e-

6.3.2 1/0 Punction: OPEN

form OPEN (filename, mode)
CHAR *filenams ;
1€ 49 nodae
purpose

Opens a file with given name for ccc.o"
according to given mode. Allows greater
control over mode of apening than PFOPEN.

arguments:
filename, a character string specifying
a standard OS§/A+ davice or file name.

mode is an INTeger. The low byte of
mode goes into AUX1 and the high byte
into AUX2 of the 10CB asmociated with
the OPEN'ed file. (See your OS/A+¢
referance manual for mare details of the
10CB.)

returnss
A positive INT (a channel number,
usually referred to in subsequent
sections as “iochan®) is returned upon a
auccessful NPEN; errors are indicated
by the standard error code return.

discussion)

CAUTION: the INTeger “"fochan® returned by FOPEN must be
retained and used as an argument to subsequent 1/0
(g atione. Severe errors and/or strange and wondrous

/s can occur if the various 1/0 operations are not
p.. «¢d a channel number obtained via a successful FOPEN
or OPEN.

Thers are two flles that do not have to be opened:
standard input and standard output. They refer to the
keyboard and screen, respectively and currently cannot
be redirected. The IOCHAN for both of these is 0.

MODES @, 1, and 2 (read, write, and updcti) are
converted tao 4, 8, and 12, for convenlence and to
provide conformance with standard C.

-~

6.3.1 1/0 Punction: FGETC

P L L T T P P T 2

focrm;
roeTc (iochan)
INT lochan;

purpose:
FGETC returns the next Dbyte fram the

specified 1/0 channel.

arguments;
fochan MUST be an INTeger channel number
of a file opened for read access (or
read/write access) obtained as the
result of a previously successful call
to POPEN.

returns:
INT:) the next byte from the specified

channel. A -1 is returned on end of
file; other negative values are standard
error codes.

discussion:

Note that FGETC returns an INTeger character, NOT a
CHAR extended to INT. This {mplies that successful
returned values will always be in the range of & to 253
decimal. However, if the character returned |is
assigned to a CHAR and then wused |in ' signed
comparison, a negative value (indicating an error) will
result if the character‘'s value is actually 128 to 255,
since the CHAR will then be sign extended. ’

EXAMPLE
CHAR ¢)

IF ((cw=fgetc(d)) <« 9)
PUTS ("1/0 ERROR")

In this example, the user will see an apparent 1/0
error anytime the byte fetched from the file has a
value from 128 to 255. A better approach would have

been to declars “"c” to be INT.
As with all 1/0 operations, “iochan” may be specified

as zero (@), indicating input from the standard input
{the keyboard).

ce§Tem

6.3.4 1/0

Punctions: GETC

form

purposes

argumentss

returns:

discussion:

GETC (iochan)
INT iochan:

GETC (s exactly the same as PFGETC. The
second entry name is for consistency and
convenience only.

fochan is an INTeger channel number of a
file previously opened for read access
(or read/write access).

INT: Same as PGETC

se® PGETC for cautions and hints

SY

purpose:

argumente:

returns:

discussion:

FPUTC (c, fochan)
CHAR ¢
INT {ochan ;

PPUTC writes the CHARacter ¢ to the
specified channel, iochan.

c is a single character. 1€ passed an
INT or othar non-CHAR value, only the
least significant byte of the argument
is used.

fiochan is an INTeger channel number of &
file previously opened for write access
(or read/write access).

INT: The value returned will either be
positive, indicating proper execution,
or negative indicating & standard error
code. See saction 6.1 for {information
about standard errors.

As with all 1/0 operations, "iochan®” may be specified
as tero (9), indicating input from standard fnput (the

keyboazd).

Y ¥ P

6.3.6 I/0 Puctions:s PUTC

form:

purpose’

arguments:

returns:

discussion:

PUTC (¢, {ochan)
CHAR ¢}
INT fochan

PUTC is exactly the same as PPUTC. The
second entry name is for consistency und
convenience only.

c is s elngle character. I[If passed an
INT or other non~CHAR value, only the
least significant Dbyte of the argument
Ls used.

fochan Ls an INTesgar channel number of a
file previously opened for write accsss
(or read/write access).

INT: Return codes are exactly the same
as PPUTC

See PPUTC for discussion.

Y .

$.3.1 I/0 Punction: READ

- P - - - P " - -

forms
READ (iochan, buffer., count)
INT Lochan;
CHAR *buffer;
INT count
purpose

READ reads & binary record of up to
COUNT characters fruom the file specified
by JOCHAN into BUFPER.

argumente:
fochan is an INTeqgear channel number of a
file previcusly opensd for read access
{or read/write access).

buffer 4is a pointer to an array of
characters. The array must have been
declared large enough (at least of size
count) to contain the requested record.

count is an INTeger which specifies the
size of the record to be read.

returne;
INT: The return value will either be the
number of characters read, a zero
indicating an end-of-file occured, or a
negative number 4indicating an error.
See section 6.1 for detalils on standerd
error codes.

discussion:

Under OS/A+ versian 2, READ will always return count
unless an and of file was encountered while trying to
resd the specified record, in which case the actual
number of cheracters resd is returned. 1If this “short
count® {s non-zero, then the next and all subsequent
raads will return tero. '

Under 06/A+ version 4, the above rules apply except
that, {f the program reads a record in a random access
flle which has a "hole” in it, it is possible thet a
short read will result. The next read will then result
fn either =zero bytes read or an errur code. However,
if the file pointer is moved past the hole (via POINT),
further reads might be successful.

cebl-~

6.3.8° 1/0 Punction: WRITE

T L N T L T - o -

form:

purpase:

argumentss

returns:

WRITE (IOCHAN, BUPFER, COUNT)
INT iochan
CHAR * buffer;
INT count

WRITE writes a binary record of length
COUNT from BUFFER to the file specified
by IOCHAN.

fochan is an INTeqer channel number of a
file previously opensd for write access
(oxr read/write access).

buffer is a pointer to an array of
characters. The array should have besn
declared large enough (at least of size
count) to contain the requested rscord.

count is an INTeger which specifies the
size of the reacord to be written.

INT: The return value will either be the
number of characters transfered or a
negative number indicating an error
occured. Gee ssction 6.1 for details on
standard error codes.

“ef2em

6.3.8 (continued)

discuseion:

Generally, the returned INTeger will slways be equal to
count unless esome fatal arror (e.g., disk write
protected or disk Full) occurred.

Since € is “stupid® about "buffere®, the user might
consider setting up some record I/0 like thise:

EXAMPLE:
CHAR name(25)
CHAR address[25] :
CHAR cityl15]) ;
CHAR state{2]
CHAR zipcode[5]
$DEFINE record nane
4DEPINE recordeize 72
MAIN ()

T |

WRITE (ifochan,record,recordsize);

CAUTION: This trick only works {f the character arrays
defining the record are globals. Order of allocation
of local (auto) variables on the system stack is not
80 neatly predictablae.

.

an§le~

6.3.9 1/0 Punction: PFGETS

- D > . - e o

form

purpose:

argumenta:

returns:

discussion:s

PGETS (buffer, count, lochan)
CHAR *buffer
Nt count ¢
INT iochan)

FGETS reads up to count characters from
fochan into buffer. Input is terminated
early it a carriage return is
encountered. A zero is appended after
the last character read.

buffer is a pointer to a character array
which will contain the characters read.
Because of the appended gero byte,
buffer should be declared as contalning
at least count+l Dbytes. It is the
user's responsibility to ensure this, as
no checking of thie is done.

count is an INTeger which specifies the
maximum number of bytes (characters) to
be read into Dbuffer. The read will
terminate upon reaching a carriage
return character or upon reading count
bytes, whichever occurs first.

iochan is an INTeger channel number of a
file previously opened for read access
(or read/write access).

INT: The value will either be the number
of characters gotten or a negative value
indicating an error. See section 6.1
for more information on standard errors.

The same discussion noted for the READ (unction,
saction 6.3.7, re end of file and/or *holes" in files
applies here as well.

-Gl

6.3.10 1/0 Fuctions:s GETS

GETS (BUPFER)
char ® buffer;

puTpOse;
GETS reads the standard input unti
carriage return {s seen, putting
charactars in RUFFER. The carrl
return is overwcitten by a zero.

arguments;

buffer is a pointer to & character ar
which will contain the characters re
Because of the appended gero by
buffer should be declared as contain
at lesast count+l Dbytes. It ie
user's responsibility to ensure this,
no checking of this is done.

count is an INTeger which especifies
meximum numbar of bytes (characters)
be read into Dbuffer. The read w
terminate upon reaching a carri
return character or upon reading co
bytes, whichever occurs firet.

returnsi
INT: The valua will elther be the num
of characters gotten or a negative va
indicating an srror. See section
for more information on standard erro
discussion:

See dlscuseion of FGETS, weection 6.3.9. GETS

equivalent to FGETS, excepting that chaanel O

assumed and the terminating RETURN code {s hand
differently.

G

6.3.11 I/0 Function: FPUTS

.OCm;

FPUTS (buffer, iochan)
CHAR ¢ buffer;
INT iochan;

purpose
PPUTS writes the null-terminated buffer
on the indicated JOCHAN. ¥O newline is
appended.

argumentss
buffer is a pointer to an array of
characters. The array should have been
declared 1large encugh to contain the
character string which {s to be written.
iochan is an INTeger channel number of a
file previously opened far write access
(or read/write access).

returnss
INT: The value returned will either be
positive (number of characters written)
Or negative, indicating an error. See
section 6.1 for details on astanderd
erTOr codes.

discussion:

FPUTS is designed to be used with line oriented and
character string ariented output, since the record (or
line) to be written to the file is nul terminated, just
4s is & normal C character string.

Remesaber, the nul byte is not written, and a Return
character is not appended. If a Return character is
desired in a literal string, use the setandard escape
coavention, thusly:

EXAMPLE:

FRUTS("\dx0CPrinter Fage Heading\n",pr)
The ¢x0C ie & standard ASCII form feed cheracter. The
\n is & newline character, specifying the appropriste
byte valus for the machine on which it is used.

ccblm=

6.3.12 1/0 Punction:s PUTS

forms
PUTS (buffer)
CHAR ®* buffer ;

purpose;
Writes the null-~terminated string BUFFER

on the standard output. A newline I8
appended.

argument s
buffer is a pointer to an arrey of
characters. The acray should have been
declared large snough to contain the nul
termainated string.

returns; INT:s The value returned will either Dbs
positive, indicating proper execution,or
negative 1indicating a standard ecror.

discussion;

PUTS (s designed to be used with Lline orlented and
character string oriented output, since the record (or
line) to be written to the file 1s nul tecrminated, just
48 Lo & normal C character string.

CAUTION: note the difference between FPUTS and PUTSI
PUTS does indeed automatically append a Return
character to the output 1line while FPUTS8 does not.
Should you need to output a line to the screen
(standard output) without the appended Hetutn, eimply
use FPUTS(buffer, @), since channel @ is always
standard Qutput.

-——b]=-

6.3.13 1/0 Function: PERROR

at

purposes

argumentss

returnes

discussion:

- - - gy -

FERROR (iochan)
INT iochan:

FERROR returns the last return codg
generated by the operating system for
the spaecified I/0 channel.

fochan MUSBT be an INTeger channel number
of an accesseible filed obtained as the
result of a previously succeasful call
to FPOPEM (or OPEN).

INT: Always returns an ercor code, as
specified {n section 6.1; but the code
returned may also be 1, meaning no
errors.

The maln purpose for FERROR is that it allows the user
to “trap® certain errors that may require some sort of
special attention. Buch as:

1? (FERROR{channal) == Dfull)
PUTS(*\nDisk Full®”);

ST P

6.3.l4 I/0 Punction: PEOP

purpose:

arguments:

returns:

discussions:

The advantage

FEOF (iochan)
INT fochan;

FEOF returns non-zero (TRUE) if end of
file has been reached on the specified
[/0 channel.

fochan MUST be an INTeger channel number
of an accessible fliled obtained as the
cresult of a previously successful call

to POPEN {or OPEN).

INT: If the value returned is non tero,
then an end-of-file has been reached on
the specified channel; otherwise it has
not.

of PEOP is that {t allows the user to

control the reading of a file with only ons statement,

such as in:

WHILE (FEOF(l) w= @)
$(

§)

L)

-——89--

6.3.15 1/0 Fuction: FCLOSE

forms
FCLOSE (iochan)
INT iochan:
purpose:
PCLOSE closes the aspecified channel.
arguments:
iochan MUST be an INTeger channel number
of an accessible filed obtained as the
result of a previously successtul call
to POPEN (or OPEMN).
returns:
INT: The value returned will either be
positive indicating proper execution or
negative {indicating an erxor. See
section 6.1 for details on error codes.
) b
discussion:

The function FCLOSE is the reverse of FOPEN; it breaks
the connection between the file dsscripter and the
external name that was established by FOPEMN.

NMOTE: When control is returned to 08/A+ all open files
are closed automatically.

-n?)mw

6.3.16 1/0 Puction: CLOSK

e W e S W W

forms

CLOSR {IOCHAN)

int ifochan;

purpose

CLOSE is Ldentical to PCLOSK.
arguments:

See description of FCLOSE.
returne:

INT: Return value same as FCLOSE
discussions

Same as FCLOSE.

N F P

6.3.17 1/0 Fuction: EXIT

purpose:

stgument s

returne:

dis:.ssion:

EX1~ (eccor)

INT error:
w»

EXIT retur:.s control o “he oparating
systam.

errur e an INTaqar aluie, (ntenietl to
lesignate the drarce of failure (or
suc.essl of the C/&% program.

iNT3 Tne va.ue retutued is ignored by
the operating 3ysiem at the present
time.

It is expected that if a returned error codesgystam is
implemented in DS A+, it shail se 1 one byte error code
and the following coanveation will be used:

9,1

2-127

Normal ercur free return
wiarailgs..,rnon-fata’ arrors

128-255 Fata. errors

6.1.18 1/0 Punctions: NOTE and POINT

B R L R T T R R S R g AP

forms:
NOTE {iochan, type)
INT ifochan ;
INT type t
POINT (iochan, pointer@, pointerl)
INT lochan !
INT pointerd
INT pointerl
purpose.
Used for random access to disk files.
NOTE reports the current position in an
opsned file. POINT changes the current
position in an opened file.
arguments:
fochan MUST be the INTeger channel
number of an accessible file obtained as
the result of a previocusly successful
call to FPOPEN (or OPEW).
type (NOTE only) is a flag which
determines which file position pointer
is to be returned.
pointer® and painterl (POINT only) are
the sector and byte (or page number and
byte, see below} of ths to-be-made-
current positicn in the file.
returns:

NOTE returns INT: either pointer value 8
(sector or pags number) or pointer valuae
1 (byte number) of the current position
within the open file.

POINT returns INT: a standard error
code.

discussion:

NOTE and POINT are grouped together here because, in
Version 2 of 0S/A+ (and, naturally, Atari ©DO§ 2.0s),
they are a tightly linked pair used in building and
using random access files.

S . PO

(Section 6.3.18 continued)

acifically, since trus random access files ars not
Jpported by Version 2 O08/A+, one must build a
sequential file (opened for write) and NOTE the disk
sector and byte numbers at the beginning of each record
(pechaps saving the HNOTEA numbers in yet another
sequential file). Then, wvhen one wishes to read or
update a record in that same file, one MUST use a set
aof the WOTEA values to POINT to an absolute sector and
byte number on the disk.

Under Version 4 of 08/A+ (the only version available
for Apple 1I users, en optional double density diskette
version for Atari owners), proper and true randos
access 1is supported. 80 MWOTE becomes a convenience
function rather than a necessity, and POINT may be used
to seek to any position in any open file (including
positions not yet written...caution).

An examination of section 5.4.) of the OB/A+ manual
will show that NOTE returne an {integer (in AUX3 and
AUX4 of the IOCB) and a byte (in AUXS of the 10CB).
The “type® perameter to the C/65 NOTE function
determines which will be returned: if type is zero, the
sector number (page number under version 4) will be
returned (and is known as pointerd when used with
POINT); Lif type is non-~sero, the byte number within the
current sector {page) will be returned (and is known as
pointerl when used with POINT).

EXAMPLE:

aector = NOTE (file, &)

byte = NOTE (file, 1) :

/* miscellanecus operations...
presumably including file 1/0
on channel °'Pile' ¢/

minusiferror = POINT (sector, byte) ;

/* the file pointer ie repositioned
to the eams place it was when the
NOTE function calls were mads */

S, Py

(Section 6.3.18 continued)
FINAL NOTE for Version 4 of O8/A+ OMLY:

POINT may be used in an spproximation of the standard
{(Unix-oriented) C function "lseek”, which usually has
the form:

lseek{ iochan, bytaposition)

int fochan; long byteposition

Unfortunately, C/65 doesn't (yet?) wsupport the type
“long” (traditionally a 32 bit integer), so a similer
function would allow random file positioning only
within the first 64K bytes of a file. Thue we borrowed
a chapter from pre-version 7 Unla and provided POINT,
which may be thought of as

POINT{ 1ochan, pageposition, bytesinpage)

int lochan, pageposition, byteinpage

Remember, the “pagee” are always 156 bDytes long,
regardlesa of the sector or block size in use with
version 4 O8/A+. Thersefor, Lf you need to port s C/63
program to a system supporting the “lseek® functlion,
you could easily rewrite POINT as followss

POINT(fo, page, byte) int i0,page,byte)

{ return lseek(Lo, (page<<S)+byte)}, @ 1)

Or, if the new system‘'s C compller supports $define
macros with parameters, one could simply code

$define POINT(i,p,b) lseek{ i, p*256+p, &)

For more Lnformation on these possibilities and others,

we recommend a thorough study of chapters 7 and 8 of
“The C Programming Languaga“®.

P T

6.3.19 1/0 Punction: X10
»

XI0 (command, fochan, auxl, aux2, filename)
INT command g
INT fochan
INT asuxl]
e aux? '
CHAR *filename;

purposes .
X10 provides a maximum level of access
to the various file manager functions of
08/A+.

argumenta:
: command is the equivalent of the 08/A+
COMMAND byte (ICCOM in the 10CB),

iochan must be an INTeger channel
number. Depending on the XI0 function
desired, the channel may or mey not be
ane associated with an OPENed file.

auxl and auxl are the equivalent of the
ICAUX]L and ICAUX2 bytes of the O08/A+
10CB.

tilename is a character string
specifying a standard O5/A+ dJdevice or
file name. Generally, 1if “iochan"
refers to a previously opened file,
filename will be ignored. If “fochan”
refers to an available {CLOSEd) channel,
then tilename will be significant,

returnas
INT: a standard error code

discusasion

‘This function is a generally non-transportable system
call designed to provide properly compatible access to
0S/A+. Those of you familiar with Atari BASIC and/or
BASIC A+ will recognize X10 as a direct translation of
BASIC's XID statement.

B, 73

(Section 6.3.19 continued)

Rather than give a complete list of all the possible
uses Of XIO here, we will refer you to Chapter 5 of the
OS/A+ manual. The C/65 XI0O function can parform all
the system commands listed therein other than NOTE,
POINT, and the variocus dacta transfer operations--all of
which are available via other C/65 standard functions
previously described in this chapter.

X10 can even be uscd to open a file on a specific
channel, rather than latting C/65 chooss the channel

for you:

EXAMPLE s
minusiferror = XIO(13,7,6,0,"D:*.*")
/* will perform an open (command 1) on
channel 7 for directory resd (auxle6)
of all files ("*.%") on drive 1 ("Di")*/

And, of course, XIO can be used for such functione Aas
renaming, erasing, protecting, and unprotecting files,
as well as much more. As a final example, we show hers
the implementation of an ERASE (file from disk
directory) function:

ERASE (file)
CHAR *file
§i
RETURN XIO(33,7,8,0,file) 3
§)

CAUTION: This example assumes that channel 7 ia
- available for use by the X0 function. Generally,
since the C/65 FOPEN and OPEN functions allocate
channels in increasing order starting from channel 1,
channel 7 will be the last one used. Still, {f you
wanted to writa a truly safe function, you should
perhaps examine the ICHID field of channel 7's 10CB
(and, again, see your 08/A¢+ manual for the epeclfic
location of the field and the IOCBa). Of course, y2u
can avoid the problem by 1lso using XIO to perfarm your
file opens to specific channels, but this will make
your program less portable tn other 7 systems.

6.4 GRAPHICS LIBRARY PUMCTIONS

@ graphics library of C/63 gives you limited access
to some Of the graphice features of the Atari and Apple
microcomputer. These functions are not asupported by
standard C and they probably will make your C programs
non portable. They do however make life a 1little
easier when trying to use your computer's graphics.

JRC T YR

6.4.1 Graphics Function: GRAPHICS

- W . W R P T e - -

form:
GRAPHICS (modae)
INT mode;

purpose:
Tha GRAPHICS function allowa the unuf to
set his/her system to a particuler wode,
such as mode 7 for high resolution. four
color graphics.

arguments:
mode is an INTeger value, the !egal
values for mode are 0-11 and /-24.
Remember that not all of these 'lues
are legal on the Apple II.

returns:
The value returned is the standard «rror
code, see section 6.] for details an
errar codes.

discussion;

The modea salected are simply thoss modes available
via the systems graphics dciver. C/65 xnows n-:thing
about GRAPHICS per se but instead performs an ope: sting
system call to exscute the requested function.

-=79--

6.4.4 Gr;ph(co function: PLOT

JEM

purpose:

arguments:

returns

discussion:

PLOT(x,y)
INT x,¥)

PLOT sllows the user o plot a point
anywhere on the screen.

x and y are [NTeger values. The value
for each depsnds on the particular
graphice mode you are in and represent
the requested horizontal and vertical
position of the point to be plotted.
Consult your operating system,
technical, or BASIC manual to be sures
you are using 1legal values for the
graphics mode you'’ve seslacted.

PLOT returns the standard ecrror code.
Refer to section 6.1 for detalls on
erroc codes.

The PLOT function works the same way that BASIC'e does,
with the 3 value corresponding ta the horizonal asxis
and the y value cocrresponding to the vertical axis.

Y, P

6.4.5 Graphics Punction: DRAWTO

- > - S - - P > -

form:
DRANTO(x,y)
INT %,y

purpose: .
DRAWTO will draw a line from the last
point plotted to the point x,y.

argumentas:
x and y are INTeger values representing
the horizontal and vertical position of
the end point of a line to be drawn.
Legal values for x and y depend on the
graphics mode sulected.

returns:
DRANTO rsturns the standard error codes.
See section 6.1 for detalils on ezror
codes.

discussion:

DRAWTO causes a line to be drawn from the last point
PLOTted to the specified x,y coordinate. Again, we
suggest you consult the appropriate opsrating system,
technical, or BASIC manual for detaile and legal values
for x and vy. :

-—g)ew

6.4.6 Graphics Punction: POSITION

L 2 - -

form:

purpose)

arguments

returnas

discussion:

POBITION(x,Y)
INT x, y:

Positions the horizonal and vertical
pointer to the x y value selected,

x and y are INTeger values. Their
limits depend on the particular graphics
mode selected.

The value POSTION returns is undefined.

Although the POSITION function can be used in all
graphice modes, its best use is in text mode(s) where
the cursor will be positioned at the point x,y.

IV .

6.5 STORAGE ALLOCATOR LIBRARY FUNCTIONS

- —— o n - > - - - = - Y 2

The storage allocator functiona provide a way of
obtaining and releasing variable-sized blocke of
MmOMOry . Freed Dblocks are coalesced L(f possible. The
memory allocated is obtalned from the “free memory
above the end of your C/65 program and below HIMEM.
The user should refrain from calling operating system
routines that change the value of HINEM after the
storage allocetor (ALLOC) has been called the first
time.

-el(}§em

6.5.1 Allocation Punction: ALLOC

- P D W W D W D O TP h W R P S

JTM

purposes

argumentss

returns;

discussion:

ALLOC (S1E)
INT size:

ALLOC returns a pointer tO an area of
memory BSIZE bytes long~-=-if such an arsa
is available. v

size ie an INTeger value and represents
the arsa in bytes that you want to
allocate.

CHAR1 The value returned will bhe a
pointer to the ares of memory sisze bytes
long. If a zero is returned then there
was no large enough available block of
memory.

The ONLY area the can be allocated by ALLOC is the
memory space betwsen the end of your C program and

himenm.

.efbm=

6.5.2 Allocation functions FREE

form:
FREE (STORAGE) char *storage;

purpose:
PREE returns previously allocated meamory to
the available pool.

argumenta
storage is a pointer to the block of memory
to be freed.

returns:
Undefined.

discusseion:

The PREE function requires apeciel attention by the
user. If the pointer passed to FRELE is not the result
of a auccessful call to ALLOC, the consequances could
be disasterous.

TS I

--=this page Lntcntlonlllf left blank=--

CHAPTER 7: Interfacing to Assembly language

- - --- ——— - D D W - A - D - WS W O

Although programs written in C/6% can run up to 19
times faster than BASIC programs, sometimes (it 1la
desirable to use Assembly Lanquage routines for sven
qrester speed and compactness. For example, the I/0
library provided with C/€3 1is written eatirely in

MAC/69 Macro Assembly Language.

Since there le (currently) no linking loader available
tor 0SS and MAC/65, the sasiest way tO use assembly
code 1is via the $ASM directive. This directive eimply
causes a .INCLUDE directive to be placed n the
assenmbly language output file generated by C/63. (3ee
MAC/65 manual for a full description of the .INCLUDE
directive, but the form is generally .INCLUDE

#<filespecr.)

Typically, #ASM directives are placed outside of C
functions to define entire functions, but they could
also be used inside of C functions for optimization.
At this writing, we have made little, if any, use of
this latter capability.

A little theory about how C/65 generates code may help.

-89~

7.1 C/65 Zero Page and System Stack Ussge

- 0 @ W - > -

ret, C/63 definee several locations in zero page. A

o bit primsary regleter refered to as RL ls where C/65

does most of ite work. The high byte of this reglster

may De referted to as RH in addition to RL+#l. A 16 bit

secondary register caslled RE (high byte known as RD) is
also heavily used.

Binary operators have their operands placed in RL and
RE before the operation is exscuted, the result going
back into RL.

There is also a 16 bit tertiary register used for
internal operations called RC, whose high byte may be
referenced by the name RB, and there {is an 8 bit
temporary register called RA that s only used for
temporacry storaqge.

These registars are used by a series of routines that
the compiler calls directly (over and over again).
Collectively these routines are knuwn as the “runtime
library®.

There is one other 16 bit register used by the runtime
library, a stack pointer known as RSPL(whose high byte
can be addressed as RSPH Lf necessary). The C system
stack (not to be confused with the 6502 setack located
from $1688 to $1rF) ie initialized to what is assumed to
be the bottom of the user program upon program
execution and grows DOWNWARD. By dafault, a ¢
program’s DbDase address is $4000, with the system stack
residing between the contents of LOMEM and $3IFFF
(CAUTION: C makes no check for a "crash® of the system
stack with LOMEM).

Note . that although the standard etack operations,
“push® and “pop” must be done with wmore than one
instruction, at least the C/65 stack can be mors than
256 bytes deep and reside anywhere in memory.

SPECIAL NOTE: The inital value of the stack pointer may
be changed by editing the runtime library source code.
(Change the equate of the string “STARTSTACK"). The
exscutable code file grows up from the intial stack
pointer value.

ae90--

7.2 Accessing Punction Parameters

|
Parameters are passed to called functions, whe! 'l
written {n C or assembly language, via C/65°a sysiom
stack. The rule for plecing parameters on the stk
f91 Decrement first, and then store, for each parame! et
in the order which they are deflned.

Perameters are stored in the standard low byte/hih
byte format (i.s, the high byte of a 16 bit paramcier
is stored in the higher address). All parameters, cvon
character parameters, are sign-eatended, and arrays 'nd
strings are passed as pointers to the actual data.

For exanple, luppOll that the stack pointer‘s value |8
$3500, and that there ls & function named “POOBR*
which . sxpects 3 psrameters: an integer, a characi+v,
and a setring (or, | mors proparly, & “pointer to
character®). Then, assume a call of the form

FOOBAR (3, ‘c!|, "abec")

lf we assume that the compiler has allocated space for
the string “abc® starting at location $5080, then upon
entry to POOBAR, the stack looks like this:s '

s$3arr | 300

$14re ?--;;;--- /* the constant 3 ./

s3ar0 | s09

$34rC T--;;;--- /* hex squivalent of ‘¢’ */

$a4rB | $50

$34PA | se0 Comm

o esess

~-=--R§PL pointse hers

Now, let us assume that FOOBAR is an assembly language
routine which we are writing. Let us further aseume
that we want access to the third parameter, the
character pointer (or string address, or ...). A
function compiled by C/65 will use code similar to the
following:

LDY ¢80

LDA (RSPL),Y

STA RL

INY

LDA (RSPL),Y

S8TA RH

And that code loada the addrees of "abc” in the primary
register. Of course, an assembly language routine
might wish to place the parameter it has retrievad
somevhere else, but the principal ls the same. The
second parameter to the function is accessed in the

‘me way by eimply replacing the "LDY #8" with "LDY

‘. And, of course the first parameter is acceased
.28 "LDY #4". Remember: the receiving function sees
the parameters on the stack in reverse order compared
to the way they are written in the function call.

CAUTION: The compiler allocates aspace for local
variables on the stack BELOW the system stack pointer.
Thus ths ahove code will not work INSIDE of a compiled
routine unless it s placed directly after the
function's opening left brace and before any local
declarations. (Of course, if the function defines no
local variables, the code given might be valid.)

.Y P

7.3 Paseing Vrlues Via Global Variables

‘taclared at the "global® level in a /¢,
program ie Kkp e, by its label, to the asseambler.
Therefore, auy @&ssembly language program called by o
C/6S program way fefer to these vaciables by name.

Any variable

Also, if the /15 declares a variable to be “EXTERN®,
that variabi«. way be defined in the assembly languaga
routine (so tha! it ie, Indeed, EXTERN to the 7/g¢

moduls).

Remember, [N+ variables ara equivalent to “.4opg-
assambly langivie locations, with the LS8 Dbefore rh.

MSB.

7.4 Returnig VYalues to the C Expression

- - - - P L L L L L EX Y T

Any C/65 (unction (and that includes f.na-j.,
subroutines wi i'ten in assembly language) may pass -4-)
one and only e Value to the function which callet .,
In the curren! “orsion of C/6%, the returned val:s -
always take '’ be an INTeger. 1f some oOther usajs iy
desired, {t in *he caller’'s and callee's responsi: .. .-,
to coordinate ' % wmeaning of the returned valus.

To return a vo: @ ta a caller, simply pldce the ¢ - ..
return value n location RL (which ie the LSz, :=: .
the MSB). Car- whould be taken to zero or sign «,-,-
the MSB {f a ¢+ byte value is heing returned.

% P

7.9 A Simple Example

The following example shows a C/65 program and a
C-callable assembly language routine which demonstrate
nearly all of the points made in eections 7.1 through
7.4. The C/6% function MAIN() uses both entry and
EXTERN global variables and local variables and expects
the assembly language routine to return & proper valus.

The assembly language, NEWROUTINE, adds what 1is in a
global 1location named GORP to a passed parameter and
reaturns the result. This routine Lllustcates thres
principless (1) pessing values in global locations,
(11) paseing values via the C system stack, and ({ii}
returning values to the caller via the C expression
evaluation mechanism. In addition, though not part of
the code of the routine per se, the assemdly code
defines a variable (an initialized array, no leass) to
be referenced by the C routine.

Also, please note that since the C program defines the -
global GORP, the assembly lanqguage routine need not do
80, And, contrariwise, since the assembly language
code defines the variable SQRTABLE, the C program needs
only make an LXTERN reference to it.

{(The program example follows on the next page.)

ceQfmm

The C Calling Program:

INT GORP; /* a global...defined hera */

EXTERN INT SQRTABLE[])

/* an erternally defined
array of integers */

MAIN () $t
INT RES /®* a local variable */
GORP = 3,

RES = NEWROUTINE

(7); /* RES should be 12 ¢/

RES = SQRTABLE(RES] 1 /* and now RES =

the square aof
iteelf... 144 ¢/

$) }
The MAC/65 Assembly Lgnquugo Routine:
NEWROUTINE
LDY #0 tto fetch parameter
CLC 1get ready to add
LDA (RSPL),Y ;fetch low byte of parameter
ADC GORP 1add to low byte of globel
STA RL ;store low byte of result
INY ipoint at high byte of parametof
LOA (RSPL).Y tfetch it
ADC GORP+1 jadd to high byte of global
STA RH 1store high byte of result
RTS treturn to C/65
SQRTABLE = * 1a table of squares
.WORD 2%*gd, 1¢1, 2*2, 3%}
+WORD 4%*4, 5*S5, 6*6, 7*7
+WORD 8*8, 9%9, le°*l@, 11°*11
JWORD 12%12, 13*13, 14°*14, 15°15

!t note how we let the assembler do the work

! for us ... and it's faster than letting C/65
;] 40 the work at runtime

~eQ5 -

