m ATARI®* PROGRAM EXCHANGE

ATARI PASCAL
User-Written Software for ATARI Home Computers

LANGUAGE SYSTEM

ISO Pascal with many enhancements

Diskette: 48K (APX-20102)

ATARI FASCaL LaNGuUuAaGE SYSTEM

Froaram and Manual Contents © 1982 ATARI, Inc.

Copyright notice. On receipt of this computer program and associated documentation (the
software)y, ATARI, Inc, grants you a nonexclusive license to execute the enclosed software,
This software is copyrighted, You are prohibited from reproducing, translating, or
distributing this software in any vnauthorized manner,

Distributed By

The ATARI Program Exchange
P.Q. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above. or call toli-free:

800/538-1862 (outside California)
800/872-1850 (within Califormia)

Or cail our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, Inc.

ATARI®

ATAR! 400™ Home Computer
ATAR! 800™ Home Computer
ATARI 410™ Program Recorder
ATARI 810™ Disk Drive

ATARI 820™ 40-Column Printer
ATARI 822™ Thermai Printer
ATARI 825™ 80-Column Printer
ATARI 830™ Acoustic Modem
ATARI 850™ Interface Maoduie

Printed in U.8.A,

This APX diskette is unnotched to protect the software against
accidental erasura. However, this protection also prevents a program
from storing information on the diskette, The program you‘ve
purchased involves storing information. Therefore, before you can use
the program, you must duplicate the contents of the diskette onto a

notched diskette that doesn’t have a write-protect tab covering the
notch. :

To duplicate the diskette, call the Disk Operating System (DOS) menu
and select option J, Duplicate Disk. You can use this option with a
single disk drive by manually swapping source (the APX diskette) and
destination (a notched diskette)until the duplication process is
complete. You can also use this option with multiple disk drive
systems by inserting source and destination diskettes in two separate
drives and letting the duplication process proceed automatically.
(Note. This option copies sector by sector. Therefore, when the
duplication is complete, any files previously stored on the

destination diskette will have been destroyed.)

NON-EXCLUSIVE, ROYALTY-FREE-LICENSE TO USE

THE RUN-TIME SYSTEM ASSOCIATED WITH THE

I. Purpose

In order to promote widespread use of the Pascal camputer language o©n
ATARI® Home Computers, Atari, Inc. ("Atari®) will grant a non-exclusive,
royalty-free license to distribute the Run-Time System associated with the
ATARI Pascal Language System ("Pascal").

II. The License -

Subject to the conditions stated herein, Atari will grant to the original
paxchaser of Pascal ("Licensee®) a nom-exclusive, royalty-free license to
distribute the Run-Time System associated with Pascal ("Run-Time System").
Licensee is only authorized to distribute the Run-Time System in an object code
form which is identical to the Run-Time System of Pascal (APX product
APX-20102), and only in conjunction with-and on the same media (e.g., diskette)
as application programs developed by Licensee which require the Run-Time System
for their proper operation. Except as provided above, Licensee shall not use
or purport to authorize any person to use any of the copyrights, trademarks,
service marks, or trade names of Atari without Atari's prior written consent.

The Run-Time System consists of the following files: PASCAL, MON,
PASLIB.ERL, FPLIB.ERL, GRSND.ERL. This license conveys rights which relate
solely to these five (5) named files. These files are encoded on the diskette
which is part of Pascal. '

III. The License Term

This license will run for a term of three (3) years from the date of
purchase of Pascal. Two (2) extensions, each for a duration of one (1) year,
will be granted upon receipt of written request fram Licensee. Requests for
extension should be submitted two (2) months prior to the expiration of the
then current term.

Iv. ACCGEQDCG

Licensee will be deemed to have accepted the terms and conditions of
this Agreement when he/she distributes to any third party an application
Program which incorporates the Run-Time System licensed hereunder.

#59(A1) 2/24/82

V. Additional Terms and Conditions ‘

A. Licensee understands and agrees that:

(1) The Run-Time System is distributed on an "as is" basis without
warranty of any kind by Atari.

(2) The entire risk as to the performance and quality of the
Run-Time System is with Licensee.

(3) Should the Run-Time System as incorporated into Licensee's products
prove defective following its purchase, Licensee and not Atari,
Atari's distributors, or retailers, assumes all costs associated with
or resulting fram use of Licensee's products including all necessary
repair or servicing. :

(4) Atari shall have no liability to Licensee or to customers of Licensee
for loss or damage, including incidental and/or consequential damage,
caused or alleged to be caused, directly or indirectly, by the
Run-Time System. This includes, but is not limited to, any
interruption in service or loss of business or anticipatory profits
resulting fram the use or operation of the Run-Time System. :

B. Licensee shall indemnify and hold Atari harmless from any claim,
loss, or liability allegedly arising out of or relating to the operation of the
Run-Time System as used by Licensee or custamers of Licensee pursuant to this
Agreement. .

C. Licensee shall not suggest, imply or indicate in any manner that any of
his/her software products which incorporate or use the licensed Run-Time System
are approved or endorsed by Atari.

D. Licensee acknowledges that a failure to conform to the provisions
of Subsection C of Section V will cause Atari irreparable harm and Atari's
remedies at law will be inadequate. Licensee acknowledges and agrees that
Atari shall have the right, in addition to any other remedies, to obtain an
immediate injunction enjoining any breach of Licensee's obligations set forth
in Section V.C above.

E. No waiver or modification of any provisions of this Agreement shall be
effective unless in writing and signed by the party against wham such waiver or
modification is sought to be enforced. No failure or delay by either party in
exercising any right, power or remedy under this Agreement shall operate as a
waiver of any such right, power or remedy. ‘

F. This Agreement shall bind and work to the benefit of the successors and
assigns of the parties hereto. Licensee may not assign rights or delegate
obligations which arise under this Agreement to any third party without the
express written consent of Atari. Any such assignment or delegation, without
written consent of Atari, shall be void. .

#39(A2) 2/23/82

G. The validity, construction and performance of this Agreement shall
be governed by the substantive law of the State of California and of the
United States of America excluding that body of law related to choice of law.
Any action or proceeding brought to enforce the terms of this Agreement shall
be brought in the County of Santa Clara, State of California (if under State
law) or the Northern District of California (if under Federal law).

H. 1In the event of any legal proceeding between the parties arising from
this Agreement, the prevailing party shall be entitled to recover, in addition
to any other relief awarded or granted, its reasonable costs and expenses,
including attorneys' fees, incurred in the proceeding.

VI. Specific Disk Qperating System Exclusion -

The license granted herein does not relate in any way to the ATARI®

Disk Operating System, DOS II. Inquiries relating to such a license should be
sent to:

Atari, Inc.

Heme Computer Division

60 East Plumeria Drive

San Jose, CA 95134

Attn: Software Acquisition Group

For Atari: & \ b B
Atari, Inc. By: gl SNV

1265 Borregas Avenue Name: Bruce W. Irvine

P.O. Box 427 Title: V.P., HCD Software
Sunnyvale, CA 94086 Date: A-35 -9

#59(A3) 2/23/82

CHAPTER 1:

etk
[30l LN

CHAPTER 2:

W~

P

PULUNRUULD UM~
NC G R ON =

MRNNRRPPPPDD -

NAUNNUNNNNNNNNUNNNNNNNN RN NN RBNN
= JONODPON-

VU AUUWWUWUWWWWOWORNNNRRNRLNMNR PP P e e e

CHAPTER 3:

TABLE OF CONTENTS

ATARI PASCAL INTRODUCTION AND OVERVIEW

Manual Overviesw

System Overview

System Requirements

Run-Time Requirements

ATARI Pascal Distribution Diskette Information

HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM

Compile, Link and Run a Sample Program
Compile Sample Program

Link Sample Program

Run Sample Program

Campiler Dperation

Invocation and Filenames

POS and GQUIT Options

Compile

Compilation Data

Caompiler Toggles

Entry Point Record Gensration (E)
Inciude Files (I

Strict Type and Portability Checking (T, W)
Run—-Time Range Checking (R)

Run-Time Exception Checking (X0
Listing Controls (L.P)

Summary of Compiler Toggles

Built—in Routines and Include Files
Error Messages

l.ine Numbers

Linker Operatian

Invocation and Commands

Linker Option Switches

Run-Time Library Search (/8)

Memory Map (/M;

Load Map (/L) and Extended Load Map (/E)
Program (/P) and Data (/D) Origin
Continuation Lines (/C)

Linker Input Command File (/F}

Linker Switch Summary

Relocatable File Requirements

Linker Error Messages

Attributes of Linkable Modules

Object Program Execution

ATARI Program—-Text Editor (MEDIT)
Running the ATARI Program-Text Editor

ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS

[

L R ANA NN

HOUHUNUUOURUUDOLEURUULUURERVIRDEEUINUULUUDIRNEEUEDELOE
NN N NN NN NN NN NNNNNNNNNG D AN A S A AR R AL R A AR AR R A RAR AR RUNN NN~

SONCUDWN -

L R

LA N

PANPPRVUVWUWQRUOROR -

S gUON>EPWON -~

N e

fars

Modular Compilation

Data Allocation and Parameter Passing
Data Allocation

Parametsr Passing

Program Segmentation-—Chaining
Built-in Procedures and Parameters
MOVE, MOVERIGHT, MOVELEFT

EXIT

TSTBIT, SETBIT, CLRBIT

SHR, SHL

HI, LG, SWaAP -

ADDR

SIZEQOF

FILLCHAR

LENGTH

CONCAT

coPY

POS

DELETE

INSERT

ASSIGN

WNB, GNB

BLOCKREAD: BLDOCKWRITE

OPEN

CLOSE, CLOSEDEL

PURGE

IORESULT

MEMAVAIL, MAXAVAIL

Quick Reference Guide to Built-ins
Non-Standard Data Access

.Absolute Variables

INLINE

Syntax

Applications

Graphics and Sound Documentation
Screen Types

Yariables

Graphic Procedures and Functions
Initialize Procedure

Graphic Procedure

Textmode Procedure

Setcolor Procedure

Color Procedure

Plof Procedurse

Locate Procedure

Position Procadure

Drawto Procedure

Fill Procedurs

Sound Procedures and Functions
Sound Procedurs

Soundoff Praocedure

Controller Functions

Paddles

Paddles Functien

SYAYY)
A I |

o o

rae
WM -

4.4

CHAPTER

GOUAADDNnGaKnn
b R b het b et b ek b b et b b
H UM

ONNNNNG S W N~

CHAPTER

6.1
6.2

CHAPTER

WM

NNNNNNNNNNNNNNNNN
L N s R R R I
PUWUN M

ROUNRPNRS -

R e

(3]

Trigger Function
Joysticks
Stick Function

RUN-TIME ERROR HANDLING

Range Checking
Exception Checking
User Supplied Handlers
Fatal Errors

STRUCTURE/FORMAT OF A PASCAL PROGRAM

Data Types

CHAR

BOOLEAN

INTEGER

REAL

Byte

Word

String
Definition
Assignment
Comparisons
Reading and Writing Strings
Set .

COMPATIBILITY

Incompatibilities with UCSD Pascal
Additional Features Available With ATARI Pascal

LANGUAGE DEFINITIDN

Introduction :

Summary of the ATARI Pascal Language
Notation, Terminolegy, and Vacabuylary
Identifiers, Numbers., and Strings
Constant Definitions

Data Type Definitions

Simple Types

Scalar Types

Standard Types

Subrange Types

Structured Types

Array Types

Record Types

Set Types

File Types

Pointer Types

Types and Assignment Compatibility

&7
&7
&7

&8

&8
&8
&9
&%

70

70
70

71
71

71
71

72
74
75
79

76

77
78

80

80
a1
83
84
85

86
86
8&
86
86
a7
88
88
=

Y]

NMNNNY

V0000000000 0VVIDDATBDANNNNNN

NRNRRRNRN NN

QNN R~

) =t = et pa

b et et b
E- R ANV o

LURE S O

LI M) = et o e

PN [LV

W

FPUDRONNN -

LUNw

AN

G P

Declaration and Denotation of Variables

Entire Variables
Component VYarizbles
Indezed Variables
Field Designators
File Buffers
Refereanced Variables
Expressions

Operators

The Operator NOT
Multiplying Operators
Adding Operatars
Relational Operators
Function Designators
Statements

Simple Statements
Assignment Statements
Procedure Statements
60T Statements
Structured Statements
Compound Statements
Conditional Statements
I# Statements

Case Statements
Repetitive Statements
While Statements
Repeat Statements

FOR Statements

With Statements
Procedure Declarations
Standard Procedures-

File Handling Procedures
Dynamic Allocation Procedures
Data Transfer Procedures

FORWARD

CONFORMANT ARRAYS
Function Declarations
Standard Functions
Arithmetic Functions
Predicates

Transfer Functions

Further Standard Functions

INPUT AND QUTPUT

The Procedure READ
The Procedure READLN
The Procedure WRITE
The Procedure WRITELN
Additional Procedures
Programs

i0a
1058
104
1064
106
108

APPENDIX A:

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPEMDIX
APPENDIX

INDEX

(o]

2 m mnog o

LANGUAGE SYNTAX DESCRIPTION
RESERQED WORDS

ERROR MESSAGES

ATARI PASCAL FILE I/0
BIBLIOGRAPHY

PLAYER/MISSILE DEMC PROGRAM

HELPFUL HINTS

TABLE OF FIGURES

Figure 1-1
Figure D-1
Figure D-2

Figure D-3

Schematic Diagram of ATARI Pascal Operation
File Input and Dutput
Text Files

Writing to a printer and number Formatting

109
117
118
126
142
143
152

153

130
138

i40

PREFACE
PASCAL =~ WHAT IS IT7

Pascal was created by Niklaus Wirth to facilitate teaching a
systematic approach to computer programming and problem solving. This
high—level structured programming language is suited for professional
software developers, making it an excellent tovl for developing and
maintaining programs.

PURPOSE OF THIS MANUAL

This reference and operations manual defines the language features of
ATARI Pascal and can help you to wunderstand how %to use these features
This manuval assumes familiarity with the Jensen and Wirth‘s "Pascal
User Manual and Report" and/or International Standards Organzation
(180) draft standard (DPS/7185). The standard Pascal features that
differ in ATARI Pascal from those in the standard and in Jensen and
Wirth’s "Report® are described here. This manual also contains
information on how %o operate the compiler and linker; a description
of the implementation of ATARI Pascal data btypes; and a summary of
built-in features and examples of their usage.

AUDIENCE

This manuval is specifically designed for advan:ed'programmers who
are familiar with Pascal and with the #features of the ATARI 800 Home

Computer System. This manual is net suited for learning Pascal or %the
ATARI 800 Home Computer.

HOW TO USE THIS MANUAL

We recommend starting with the Introduction and Overview (Chapter 1)
and then proceed through Chapter 2, which describes how to operate the
system, recommendations for backup and a sample program to get you

started. The rest of the manual is technical and should be referred to
as needed.

PRODUCT CONSIDERATIONS

The ATARI Pascal Language System was designed for use by experienced
software developers. The steps required %o compile an ATARI Pascal
program are time consuming. Memory limitations, diskette capacity and
access time will affect product performance. As with cther APX
progranis, ATARI does not support this product after the sale.

REPORTING PROBLEMS

All documented problems submitted to The ATARI Program Exchange will
be studied and considered in future revisions of this product.

CHAPTER 1: ATARI PASCAL INTRODUCTION AND OVERVIEW

This manval describes the ATARI Pascal Language System being offered
through the ATARI Program Exchange as a software development tool for
professional developers. ATARI Pascal is a pseudo—code compiler which
supparts the International Standards Organization (IS0} drafé standard
(DPE/7180 as of 16/1/80), inecluding variant records, s2ts, typed and
text files, passing procedures and functions as parameters, GOTQ out
of a procedure. conformant arrays and program parameters. Additions
to the standard available in ATARI Pascal include:

Additional predefined scalars: BYTE, WORD, STRING.
Operators on intagers % (and), !, / (or} |, 7 (NOT)
Elzse on CASE statement
Null Strings ~
Absclute Variables
External procedures
Additional built~in procedures and functions:
graphic, sound. and controller definitions
resl and trancendental definitiaons
move and fill procedures
bit and byte manipulation
file manipulation procedures
heap management aids
string manipulation
address and sizeof functions
Modular compilation facilities

In addition, run—-time error handling provides for divide by zero
check:, heap overflow check, string overflow check, range check and
user~supplied error routines.

ATARI Pascsl has been designed for data processing applications
consisting of compilers, editors, linkers, business, and entertainment
packages. It is designed to operate with the ATARI Disk Dperating
System 2.05 and is compatible with the ATARI Program Text-Editor [TMI.

This chapter presents an overview of this manual. the system and
compilation and run—time system requirements, and it describes the
files on the distribution diskettes.

Because of the availability of many text books on the Pascal
" programming language., this document is net a tutorial but rather a
reference manual and a detailed description of the extensions and
additions that make ATARI Pascal unique. Refer to the bibliography for
additional reference materials.

1.1 Manual Overview

The following provides a brief overview of each chapter coentained in
this manual.

Chapter 1:

Chapter

Chapter

Chapter

Chapter

Chapter
Chapter
Appendix
Appendix

Appendix

Appendix
Appendix
Appendix

Appendix

A:

@ m m o

This chapter introduces and outlines the features of ATARI
Pascal:, provides an overview of the system and identifies
the system requirements,

This chapter gets you started. It describes the

options of the compiler and linker and it presents
step—by~step instructions to compile, link, and run a
sample program.

This chapter describes the extenczions to ATARI Pascal, It
presents such features as modular compilation, built—in
procedures, graphics and sound extensions,.

This chapter briefly summarizes of the run—-time error
handling routines.

This chapter describes the structure of a program generated
by the compiler. Data storage is also discussed in this
chapter.

This chapter brieFlg.compares ATARI Pascal and UCSD Pascal.
This chapter defines the language features of ATARI Pascal.
A complete description of the language syntax
The reserved words list

A complete description of each compilation error
message

ATARI Pascal File I/0
A bibliography of additional Teading suggestions
Player/Missile Demo Program

Helpful Hints

1.2 System Overviesw

The ATARI Pascal Language System contains the Pascal monitor.
compiler, linker, run—time subroutine library and interpreter. Figure
1-1 shows a diagram of the relationship among these products.
Reaforence to the ATARI Program-Text Editer (APX-20075) has been
included to show ifts relationship %o ATARI Pascal.

TEXT ERITOR!

-+
*+

+ 4t

1
1

Y
Saovurce
Program
file

Y

COMPILER

+ -+

{=-— grTOT Message file

+ {=—=2temporary wark file
1

Y b ———— >*relocatable file run—time library
listing file :

O -

:
v

L INKER

+ -+
+ - 4

H

v
executable program

13

v

INTERPRETER

4 -4
+ -+

Figure 1-1 Schematic Diagram of ATARI Pascal Operation

The ATARI Program—-Text Editor may be used to create and modify the
Pascal source program. The compiler is used te transla€e the source
program into relocatable machine code. The user then links fhis
machine code with the run—time subrout1ne library to produce an
executable object program

1.3 System Requirements
The ATARI Pascal Language System requires the ATARI B800 with 48K of

RAM and two ATARI B10 Disk Drives. The ATARI B25 80-Column Printer and
the ATARI 830 Interface Module are optional. ATARI Pascal also

requires the ATARI Program-Text Editor. When using ATARI Pascal, no
cartridge should be inserted in the carfridge slot.

1.4 Run—Time Requirements

The ATARI Pascal Language System generates programs that use a wvariety
of run—time support subroutines that are extracted from PASLIB, the
run—=time library. and other relocatable modules. These run=-time
routines handle such needs as “multiply" and “divide" and file input
and output interface to the Operating System.

1.5 ATARI Pascal Distribution Diskette Information

The ATARI Pascal Language System is distributed on diskettes
compatible with the ATARI 810 Disk Drive. The system consists of two
diskettes containing object, source and relocatshle files. Listed
below are the names of each file and a brief description of their
"contents.

Diskette 1 PASCAL /L INKER

File Contents

DOS. 8YSs ATARI Disk Operating System

DUP. S5YS ATARI Disk Uperating System

PASCAL Interpreter used to execute all Pascal abgject programs.

MON Pascal monitor loaded by the PASCAL file, providing the
meny to specify the desired operation: compile, link., edit
o TUuUn.

LINK Pascal linker used to take relocatable files (.ERL) and
run-time library files as input to create abject files
(.COM;,

LINK, OVL Pascal linker part two.

PASLIB. ERL Run—time subroutine library in relocatable form. Should
always be linked last.

FPLIB. ERL Run~time support routines for floating point arithmetic
and transcendental functions.

GRSND. ERL Run—time support routines for graphic, sound and
controliler functions. '

CALC. PAS This is the source file for the Pascal demo program.

Diskette 2 Pascal Compiler

File Contents

PHO
PH1
PH2
PH3
PH4

ERRORS. TXT

GSPROCS
FLTPROCS
MOVES
BITPROCS
HEAPSTUF
DSKPROCS
STDPROCS
ISOPROCS

STRPROCS

Phase O of the Pascal compiler used for syntax scan and
creation aof token file.

Phase | of the Pascal compiler used to create the
permanent symbol fables and build the user symbols.

Phase 2 of the Pascal compiler containing code generation
initialization.

Phase 3 of fhe Pascal compiler used to create the
relocatable object code file.

Phase 4 of the Pascal compiler used %o cdmplete the obgject
tode generation.

File containing ATASCII text for error messages.

This file is the include file containing graphic, sound
and centroller definitions.

This file is the include file containing real number and
transcendental function declarations.

This file is the include file containing declaratians for
character arrays.

This file is the include file containing declarations for
bit manipulation routines.

This file is the include file containing declarations for
heap procedures.

This file is the include file containing file manipulation
procedures. :

This file is the include file containing standard Pascal
routines including the floating point routines.

This file is the include file containing ISO standard
Pascal routines excluding Floating point routines

This file is &he include file contazn1ng string proce551ng
pruocedures and functions.

CHAPTER 2: HOW TO DPERATE THE PASCAL LANGUAGE SYSTEM

This chapter describes how to use the ATARI Pascal Language System
contained on the PASCAL/LINKER and Pascal Compiler diskettes. It
covers the following infermation:

Section I provides step-by~step instructions on how to compile,
link and run a sample program.

Section 2 describes the compiler and its aptions.
Section 3 describes the linker and its options.
Section 4 describes how %o run an object program.

Section 5 describes the ATARI Program Text-Editor.

2.1 Compile, Link and Run a Sampie Program

Befare compiling and running the sample program described in this

section: make a backup copy of all diskettes included in &his
package.

< 1.1 Compile Sample Program

Step One

Place the PASCAL/LINKER diskette into disk drive 1 and boot the Disk
Operating System 2. 08. Then use option C to copy the sample
calculation program "CALC. PAS" to a blank diskette on dizk drive 2.
At this time use the L option %o load the file named "PASCAL"™ from
disk drive 1. The Pascal menu will then appear.

ATARI Pascal
Version 1.0 : 1-Mar-82
{c) 1982 by ATARI

Eidit Clompile
L¥ink Rlumn
D)os Qlyit

Enter letter and C[RETURNI]:
Step Two

Respond to the Pascal menu displayed on the screen with the command
C CRETURN] to begin compilation.

When prompted for your source filename, type "D2:CALC. PAS" L[RETURNI.

The monitor will then prompt you for a token and code file name.
Respond with IRETURMNI for each.

A message will then be displayed "Change D1 to compiler disk." At this
time place the Pascal Compiler (diskette 2) into disk dvrive 1 make

sure the sample program "CALC.PAS" is in disk drive 2 and then press
ERETURNI. .

The compiler will be loaded into memory and prampt you to choose a

listing device. Respond "P:" (printer), "E:* (screen), or L[RETURN]
(ng listing).

The compiler will proceed %o display the following compilation
statisfics.

t oading Compiler

ATARI Pascal
Yerszion 1.0 - 1-Mar—-82
(c) 1982 by ATARI

Syntax Scan

Creating: D2:CALC. TOK
Listing file, P: or E:
<return> for none

File does net contain Jline numbers

< 0>,

Including Text from File: D1:STDPROCS

< 18> ...

£ R =

< B e

< B

< 128>

End of Phase 0 {syntax / token file generation)
Seurce lines processed:

ioading Phase I

Open as input: D2:CALC. TOK

Open as cutput: D2:CALC. ERL

Available Memory: 4387 - {total symbol table space} .
Usar Table Space: 3264 (after predefined symbols)
Version 1.0, Phase 1

HH4H# {one # for each routine body)
Remaining Memory 2100 {after user symbols)

Version 1.0, Phasse 2

SUBREAL 18

ADDREAL 43

TF a4 (decimal offset from beginning}
CALC 119

MENU 218

CALCULAT

External: TRUNC

External: SGRT

External: SIN

External: ROUND

External: QuUTPUT

External: LN

External: INPUT

External: Exp

External: cos

External: ARCTAN

Lines 130

Errars: o

Code 1737

Bata &4

REPLACE Dl THEN (place diskette 1 PASCAL/LINKER)
Type <return’?> to continue (in disk drive 1, then press [RETURN]

Minutes

later...

The system will prompt you to "REPLACE D1 THEN Type CRETURNI to
continue. “ At this time remove the Pascal Compiler from disk drive 1
and insert the PASCAL/LINKER in disk drive 1 then press CRETURNI.

The compilation process will then be completed and the Pascal menu
will display.

NOTE: If the compiler fails to complete compilation:, check to see if
the disketites are in the proper drives. If they are try <SYSTEM
RESET>. If both of these attempts fail. the only recourse is teo turn
off your computer and furm it on again.

2.1.2 Link Sample Program

Step One

To create the relocatable object file, respond to the Pascal menu with
the command “L" [RETURNI to begin the linking process. At this time
the following will be displayed.

Loading Linker

when LIMKER prompts with "#" enter
your .ERL file names separated by
commas ending with PASLIB/S

Then type [RETURNI

LINKER V1.0
When prompted for your filename by an asterisk (#), you don’t need to
use an extension (. ERL) but you must use the device prefix "“D2: ",

The Pascal library routines must then be linked along with your
program,

At this time respond to the filename prompt with the following:
D2: CALC. FPLIB, PASLIB/S LRETURNI]

NOTE: This program may be used as an example of using the Floating
Point Library (FPLIB) routines.

The linker will then display the following statistics and print
"LINK COMPLETE TYPE [RETURNI".

D2: CALC. ERL CABATH>
Di:FPLIB. ERL C2FFAH>
D1: PASLIB. ERL C1FS0HD

Undefined Symbols

== No Undefined Symbols --

11405 bytes written to D2:CALC. COM

Total Data OOBEH bytes
Total Code 2BCEH bytes
Remaining : 1442H bytes

Link complete type CRETURN]
At this time press [RETURN] and the PASCAL menu will display.

10

2.1.3 Run Sample Program

To run the sample program respond to the Pascal menu with the command
"R" then [RETURNI to run the object program.

You will €then be prompted for the filename and should respond with the
following:

D2: calLC. COM

The calculation program will begin execution displaying the message
"ENTER FIRST OPERAND?" Try this example for adding 5.5 to 99. 256.
First respond with “5. 5" then LRETURN]. The message "R1 = 5. SO0E+0Q"
should be displayed followed by "ENTER SECOND OPERAND?". Respond with
"9%. 256" then I[RETURN]. The message "R2 = 9. $2560E+1" should be
displayed followed by "ENTER OPERATOR:" followed by a list of
gperators. Respond with the aperator "“+" then C[RETURNI. The resuylt
"104 756" should then be displayed. You should now press the L[ESCAPE]
key to return to the DOS menu.

You have now completed the compilation, linking and running of your
first ATARI Pascal program!

11

2.2 Compiler Opesration
2.2.1 Invocation and Filenames

The ATARI Pascal Language System is executed under the ATARI Disk
Operating System (DOS 2. 08). To execute the compiler, place the
PASCAL/LINKER (diskette 1} in disk drive 1 and LOAD the file called
PAGCAL from the DOS menu. This file is the Pascal interpreter and will
avtomatically tall the Pascal monitor with a filename of MON. The
monitor then displays the following menu:

ATARI Pascal
Version 1.0 ;: 1-Mar-82
()} 1982 by ATARI

Eidit Clompile
LYink RIun
Dlos Gluit

Enter letter and CRETURNMI:

Select the first character of the desired function and enter this
character followed by a C[RETURN].

2.2.1.1 DOS and QUIT Options

The "DOS" and “"GQUIT" operation allows you to exit the Pascal menu and
return to the ATARI Disk Operating System.

2.2.1.2. Compile

When you select "C" +for “Compile,” the monitor will request you

to enter three file names and then load the compiler. The first
request is for the source file name. You may then respond with the
filename prefix (D2:) to identify the device, the input filename, and
the extension .PAS. The Compile function then requests the name for
the token and code files. If there is sufficient room on the diskette
tontaining the source file you may respond by simply depressing
{RETURNY in response to these requests. I# there is not sufficient
Toom you may specify that these files be placed on separate diskettes
by specifying the FULL file name as desired. NOTE: None of the
Compiler files may be cassette based.

A message will then be displayed "Change Dl to compiler disk.® At this
time place the Pascal Compiler (diskette 2) in disk drive 1, place the
diskette containing your source program in disk drive 2 then press
CRETURNI. ATARI Pascal then creates a relocatable file <namel. ERL
which must te linked with the Pascal linker to the routines in the
run—time library (PASLIB).

2.2.2 Compilation Data

The ATARI Pascal compiler will periodically display characters during
the first two phases of the compilation (Phase O and Phase 1).

A period (.) will be displayed on the console for every source code
line syntax scanned during Phase 0. At the beginning of Phase 1, the
available memory space is displayed. This is the number of bytes (in
decimal) of memory before generation of the symbol table.
Approximately 1K of the symbol table space is consumed by pre-defined
identifiers. When a procedure or function is found, a pound sign (#)
will be displayed on the console. At the completion of Phase 1, the
number of bytes remaining in memory is displayed in decimal.

Phase 2 generates object code. When the body of each procedure is
encountered the name of the procedure is displayed so that you

can see where the compiler is in the compilation of the program. The
linker /M (Map) option will list the absolute addresses of the

procedures in each module. Upon completion the following lines
display:

Lines : lines of source code compiled (in decimal).
Errors: number of arrors detected.

Code bytes of code generated (in decimal).

Data bytes of data reserved {in decimal)}.

13

2.2. 3 Compiler Toggles

A compiler toggle may be included in the source program to signal the
compiler that you wish to enable or disahble certain options. The
format of this toggle is (#%$_ _ _ _ #) where the blanks are filled in
with the toggle. The compiler does not accept blanks before the key
letter or trailing or imbedded blanks in names but will skip over
leading blanks: e.g., (#$E +%) is the same as (#$E+#), but the (#3% E
+#} will be ignered.

Examples:

(#$E+%)
(#$P#)
(#%1 D:USERFILE. LIB%)

2.2.3.1 Entry Point Record Generation (E)

3£+ and %$E- control the generation of eniry point records in the
relocatable file. $E+ causes the global variables and all procedures
and functions to be available as entry points (i.e.. available to be
referenced by EXTERNAL declarations in other modules). $E- suUpresses
the generation of these records thus causing the variables,
procedures, and functions to be logically private. The default state
is $E+ and the toggle may be turned on and off at will.

2.2.3.2 Include Files (I}

¢i<filename> causes the compiler to include the named file in the
sequence of Pascal source statements. Filename specification includes
drive name and extension in standard format.

The format is as follows:

(#$IDn: XXXXXXX%}
ar
(#$IDn: XXXXXXX. PASH)

where n is the disk drive number
where XXXXXXX is the Include file name

Using these standard Include file procedures as examples, you may
create Include files to be used during the compilation process.

2.2.3.3 Strict Type and Portability Checking (T W) .

$T+, $T-, SW+, and SW- control the strict type checking / non—partable
warning facility. These features are tightly coupled (i.e. strict &type
checking implies warning non—portable usage and vice versa). The
default state is $T- ($W-) in which type cthecking is relaxed and
warning messages are not generated. This may be turned on and off
throughout the source code as desired. A use of non—standard logic
and/or built-in routines will cause error 3500 to be- generated. This

error is not fatal but serves as a warning to the programmer. Code

14

generated with error 500 during the compilation will still execute
praperly.

2.2.3.4 Run—time Range Checking (R)

$R+ and $R— control the compiler’s generation of run—~time code which
will perform range checking on array subscripéting and storing into
subrange variables. The default state is $R- (off) and this toggle may
be turned on and off throughout the source code as desired

2.2.2.5 Run~time Exception Checking (X}

X+ and £X- controi the compiler‘s generation of run—time code, which
will perform run—{fime error checking and error handling for what is
termed exceptians. Exceptions are:

Zero divide
String overflow/truncation
Heap overflow

The system philosophy under which ATARI Pascal operates states that
zero divide and string overflow are treated in a "reasonable" manner
when exception checking is dicsabled. Zero divide returns the maximum
value for the data type and string overflow results in truncation of
the strimg rather ¢than modification of adjacent memory areas. The
default state is %X~ and may be changed throughout fthe source code as
desivred. See chapter 4 for more discussion of run-time error handling
and options,

2.2.3.6 Listing Contraols (L,P}

The $P and $L+, #$L- toggles control the listing generated by the first
pass of the compiler. %P will cause a formfeed character (CHR(12)) to
be inserted into the .PRN file. %L+ and $L- are used to switch the
listing on and off throughout the source program and may be placed
wherever desired. .

i35

2.2.3.7 Bummary of Compiler Toggles

Listed below is a summary of available compiler toggles:

Compiler Toggles

$E

$1

$R

T

S

$X

P

sL

-

<name>

*/ -

+/-
+/-

/=

Default

Controls entry point generation SE+
Includes another source file into the
input stream (e.g. (#$I XXX.LIB#%)
Controls range thecking code $R-

ET -
Contrals strict type checking and generation Hh-
of warning messages
Controls exception checking code $X-
Enter a formfeed in the .PRN file
Controls the listing of source code $L+

is

2.2.4 Built—in Routines and Include Files

The ATARI Pascal compilier contains only the logic necessary for
defining "magic“ pre—defined procedures, functions and wvariables.
These are such routines as READ, WRITE:. ADDR, SIZEQF, etc. which
tequire in—line code generation hy the compiler or require suppart for
a variable number of parameters.

All other routines are defined using a special keyword “PREDEFINED"
and two special types ANYTYPE and ANYFILE. You must include in

the source pragram declarations fgr these routines. This is normally
done using the #£I toggle to include STDPROCS and other similar files.
STDPROCS contains declarations #or procedures and functions defined by
the ISO standard for Pascal. Additional files contain declarations for
procedures and functions which are extensions to the IS0 standard such
as string routines, ASSIGN, IDRESULT etc. You may edit STDPROCS

and these files to contain only the roufines necessary for a given
program,

This method of defining builé~in routiﬁes is present because the ATARI

800 Home Computer has limited memory for all the declarations and user
symbole used in compiling large programs.

17

2, 2.9 Error Meszages

Compilation errors are numbered in the same sequence and meaning as
those in Jensen and Wirth’s “User Manual and Report”. Ths error

messages, brief explanations, and some causes of the error are found
in Appendix C.

Errar 407. Sumbhol Table Overflow: Occurs in Phase 1 when not enough
symbol %table space remains for the current symbol. This may be
alleviated by breaking the program intn modules.

2.2.4 Line MNumbers

ATARI Pascal allows line numbers. When line numbers are desired. the
first line of the program source file must contain & numeric value. I%
then assumes all lines contain line numbers and the lime number must
statrt in column one. Line numbers may be of any length and it should
be noted that they are ignored by the compiler ’

18

2.2 ULinker Operation
2.3.1 Invocation and Commands

LINK is used by executing the linker from the Moniter. Enter ‘L’ from
the Pascal menu followed by [RETURN] and the linker will load. The
linker will %then prompt the user for the name of the main program and
modules to be linked, separated by commas. The output is directed to
the same diskette as the main program unless you specify -an output
file name followed by an equal sign bs=fore the main progrem name.

Example:
CALC, FPLIB/S., PASLIB/S
D2: CALC=CALC. FPLIB. PASLIEB/S (CALC.COM is written to D2:)

The above command will link ome of the demo programs with the run—time

package. The items fto be linked may be preceded by a disk drive device
prefix:-

D2: CaLC, Di:FPLIB, DL: PASLIB/S
2.3.2 Linker Option Switches

The linker lets you to place a number of "switches" following the file
names in the lisf., Each switch is preceded by a slash (/) and is a
single letter. There is a parameter on the /P and /D switches.

2.3.2.1 Run-time Library Search (/S)

The examples above show the use of the /8 switch which, commands the
linker to search the previously named relocatable file, PASLIB, as a
library and extract only the necessary modules. The /S switch
extracts modules only from libraries and does not extract procedures
and functions from separately compiled modules. It is position
dependent in that it must follow the name of the run—time library in
the linker command line as in the examples above. PASLIB is a
specially constructed, searchable library. Other .ERL files supplied
with the system, unless explicitly specified, are not searchable.

ser-created modules are naot searchable. The order of modules within
a library is important.

Each searchable library must contain routines in the correct order and
be followed by /S for searching to occur. If /S is not specified the
entire contents of the library is loaded.

2.3.2.2 Memory Map (/M)

A /M following ¢the last file named in the parameter list generates a
map to the. sereen.

2.3.2.3 Load Map (/L) and Extended Load Map (/E)

19

A /L following the last module named causes the linker %o display
module code and data locations as they are being linked, A /E
following the last module works as a modifier to /M and /L and causes
the linker %o display all routines including those beginning with %,
7, or @ which are reserved for run—time library routine names.

2.3.2.4 Program (/P) and Data (/D) Origin

To support relecation of object code and data areas: the linker
supports the /P and /D switches. The /P switch controls the location
of the object area (ROM) and the /D switch controls the location of
the data area (RAM). The syntax is: /P:nnnn or /D:nnnn where "nann" is
& hexadecimal number in the range O...FFFF.

In addition, if gou specify /D, the linker will not save any of the
data area in the .COM file. This is @ good way for reducing the data
storage on diskette for programs, since only the code will be loaded
from diskette and not uninitialized data areas. Note that local file
operations are not guaranteed if this is used becauses the system

depends on the linker zeroing the data area to make this facility work
properly.

Also, if /D is used, more space is gained in the linking process
because the data is not intermixed with the code as it is being
linked. Using this switch is the first way to solve and “out of
memory" messages displayed by the linker.

Using the /F switch and /D switch does not cause the linker %o lesave
empty space at the beginning of the .COM file. The philosophy of the
linker is that if the /P switch is used, you really want to move the
program to another system for execution. This means that if you
specify /P:B8000, the first byte of the .COM file will be placed at
location BOOOH and not 32K of zeros before the first byte. In
addition, if you specify /D the linker will not save any of the data
area in the .COM file. This is a good way for reducing the data
storage on diskette for programs since only the code will be loaded
from a diskette and not uninitialized data areas.

The switches /P and /D are specified after the last routine to .be
loaded and may be in any order.

2.3.2.3 Continuation Lines (/C)

If a line needs to be continued enter /C after the last character on
the line before pressing the [RETURNI key.

2.3.2.6 Linker Input Command File (/F)

The linker lets you enter data into a file and have the linker process
the file names #rom the file. You specify a file with an extension of
.CMD and follow this file name with a /F (e, g., CFILES/F). The linker
will read input from this file and process the names just as if they
were typed from the computer keyboard. If the file contains more than
agrie line, you must use /C after sach line. If you wish to return to

20

the computer console for more input you may place /C on the last line
in the file. Data on the command line following the /F is ignored. A
.CMD file may not contain a line containing /F.

2.3.2.7 Linker Switch Summary

/S Search preceeding name as a library extracting only the
required routines.

/L List modules as they are being linked.
™ List all entry points in tabular Fnrﬁ.
/E List entry points beginning with %, 7 or @ in additien %o

other entry points.

/P:nnnn Relocate object code to nnnnH.
/D; nnnn flelocate data area to nnnnH.
/F Take preceeding file name as a .CMD file containing file

names {(s2e above for syntax).

/C Continuation Lines

2.3.2.8 Relocatable File Regquirements

The distribution diskettes contain several .ERL files that must be
linked into the program. The particular files depend on what group of
Toutines the compiler must reference:, based on the conftents of your
program. DBelow is a list of each file and the routines it contains. I¢f
you have any of these routines as an undefined reference, then link
the appropriate relocatable file $o resolve the undefined reference.

FPLIB Floating point real numbars € XOP, @RRL, @WRL (searchable)
PASLIB Comparisons, I/0, arithmetic support, etc.
GRSND Graphics, sound, and controllers support

2.2.2.9 Linker Error Messages

The linker allows up to forty names on the command line {(or command
file input) for files to be linked.

Errors encountered in the linking process are usually
self—explanatory, such as "unable to open input file: xxxxxxxx" and
"Duplicate symbol- xxxxxxx." Dyplicate symbol means that a run—time
routine or variable and wser Toutine or wvariable have the same name.
Undefined refersnce indicates the appropriate relocatablae file has not
been included. Refer 4o the preceeding paragraph on Relocatable File
Requirements.

I# you run out of memory while linking:. you may remove the data from
the code space with the /D switch. Youv may need £ run a ¢test link
with the /D switch set very high to find out what the code size is,
then relink with the /D switch set jJust above the last code address
{with some room for code expansion)

2.3.2.10 Attributes of Linkable Modules

The linker will bind together ATARI Pascal main programs, Atari Pascal
modules, and assembly language modules created by an apprapriate
assembler.

2. 4 Object Program Execution

Once the source program has been successfully comﬁiled and linked with
the appropriate run—time libraries you may execute or "Run" the
program.

When you select "R" for Run from the Pascal menu, you will then be
asked for the object #ilename to run.

Example:
D2: CALC. COM

The object program will then be loaded into memory and executed.

23

2.5 ATARI Program—Text Editor (MEDIT)

The ATARI Program-Text Editor is a versatile tool that can be used to
create and modify source programs written in ATARI Pascal. This
product may be srdered threugh the ATARI Program Exchange (APX~-20075)
or may be purchased with the ATARI Macro Assembler (CX8121)

2.3.1 Running the ATARI Pragram—Text Editor

The Pascal menu provides an option of calling the ATARI Program-Text
Editor. The default value of this option is disk drive 2. Prior %o
using this option you must first make the following modifications.

1) Copy MEDIT from the distribution diskette to a blank diskette on
disk drive 2. ' :

2) tLoad D2:MEDIT from the DOS menu using the "/N" option to prevent it
from running (this will require the temporary presence of MEM. SAY
which tan be delefted afterwards)

3} Save ift back from DOS as follows: D2:MEDIT/4A, 2600, 2601i.

This éppend operation tells the "Pascal" program pointer to begin
execution at the MEDIT entry point.

Note: The append operation may also be used to run any assembly
language file from Pascal. The file must be appended with the start
address and start address plus one. If the file consists of many
disconnected modules scattered throughout the program: make sure
the appended start address uzed is the Tun—time entry peint.

24

R

CHAPTER 3:

ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS

This chapter describes the function and use of ATARI Pascal

extensions.

3.

Woe R e R W

1

N g A WOR

It covers the following areas:

Modular Compilation

Data Allocation and Parameter'Passing
Program Segmentation ~ Chainiﬁg
Built-in Procedures

Non-Standard Data Access

wImbedded Assembly Code

Graphics and Sound Exfensions

25

3.1 Modular Compilation

ATARI Pascal supports a flexible modular compilation system.

Programs may be developed in a monolithic fashion until they become
too large to manage (or compile) and then split into modules at that
time. The ATARI Pascal modular compilation system allows full access
to procedures and variables in any module from any other module. A
compiler toggle is provided to allow you to "hide" (i.e. make private)
any group of variables or procedures. See section 2.2.3.1 for &
discussion of the $E %toggle. ‘ '

The structure of a module is similar to that of a program. It begins
with the reserved word MODULE, followed by an identifier and
semi—colon (e.g., MODULE TEST1:) and ends with the reserved word
MODEND, followed by a perjiod (e.g.. MODEND.). In between these two
lines you may declare label, constant, type, variable, procedure and
function sections just as in a program. Unlike & program. however,
there is no BEGIN. .END section after the procedure and function

- declarations, just the word MODENMD followed by a period (.).

Example:

MODULE MOD1;

<label, const.’tgpe. var declarations>
<procedurs / function declarations and bodies>

MODEND.

To access variables, procedures and functions in other modules (or in

the main program) a new reserved ward, EXTERNAL. has been added and is
used for two purposes.

First, the word EXTERNAL may be placed after the colon and before the
type in a GLOBAL variable declaration denoting that this variable list
is not actually to be allocated in this module but rather in another
module. No storage is allocated for varisbles declared in this way.

Example:
I.J,K, : EXTERMAL INTEGER; (% in another madule #)

R: EXTERNAL RECORD (% again in another module #)
e {(# some fields #)

END;

You MUST BE responsible for matching declaration identically, because
the compiler and linker do not have the ability to type check.

Second: the EXTERNAL word is used to declare procedures and functions

which exist in other modules. These declarations must appear before
the first normal procedure or function declaration in the

26

'modulé/prograﬁ. Externals may only be declared at the global
(oufermost) level of a program or module.

Just as in variable declarations, the ATARI Pascal language requires ’
you -to make sure the number and type of parameters match.exactly and
the returned type matches exactly for functions, because the compiler
and linker do not have the-ability to type check across modules.
External routines may NOT have procedures and functions as parameters.

Note Gﬁit"i%.ATARI‘Piihal exﬁéfnal namos.aré.si;nifiﬁint oﬁlg"to.seven
characters and not eight. When interfacing to assembly language, limit

the length of identifiers accessible by assembly language to six
characters. :

Listed below are a main program skeleton and a module skeleton. The
main program references.variables and subprograms. in the module. and
the module references variables and subprograms in the main program.
The only differences between & main program and a mndule are that at
the beginning of a main program there are 146 bytes of header code
and a main program body following the procedures and functions.

Main Program Example:
PROGRAM EXTERNAL_DEMO;

<label: constant, type declarations>

VaR

I, : INTEGER (% AVAILABLE IN OTHER MODULES *)
KiL : EXTERNAL INTEGER; (# LOCATED ELSEWHERE %)
EXTERNAL PROCEDURE SORT (VAR G:LIST) LEN: INTEGER):
EXTERNAL FUNCTION IOTEST: INTEGER:
PROCEDURE PROC1;
BEGIN

iF IQTEST = 1 THEN
(+ CALL AN EXTERNAL FUNC NORMALLY #)

END;
BEGIN

SORTC....):

(# CALL AN EXTERNAL PROC NORMALLY #)
END.

Module Example: (Note these are separate files!

MODULE MODULE_DEMD:

27

<label, const, type declarations>

VAR “
"1.J : EXTERNAL INTEGER;

Kel © INTECGER:

EXTERNAL PROCEDURE. PROC1:

PROCEDURE SORT(. . .):

FUNCTION IOTEST: INTEGER;

(# USE THOSE FROM MAIN PROGRAM)

(# DEFINE THESE HERE %}
(» USE THE ONE FROM THE MAIN PROGC)
(# DEFINE SORT HERE #)

(# DEFINE IOTEST HERE #)

<maybe other pfpcodurpi and ?unctions here)

MODEND.

28

2.2 Data Allocation an@ Paramete} Passing

3.2.1 Data Allocation

In addition to accessing variables by name, you must know how
variables are allocated in memory. Section 5.1 discusses the storage
allocation and format of each built—in scalar data type. Variables
allocated in the GLOBAL data. area are allocated essentially shoun
here. However, variables in an identifier list before a type (e.g.. A,
B, C : INTEGER) are allocated in reverse order (i.e., C first,
following-by B, followed by A).

. Examplie:
A : INTEGER;
B ;. CHAR;
I.J4 K : BYTE:
L : INTEGER;

STORAGE LAYOUT:

+0 A LSB
+1 A MSB
+2 B
+3 K
+4 J
+5 I
+& L LGB
+7 L MSB

S¢ructured data types: ARRAYs, RECORDs and SETs require ldditioﬁal
explanation. ARRAYs are stored in ROW major order. For example
A: ARRAY [1..3,1..3]1 OF CHAR is staored as:

+0 all1,11]
+1i AL1,21
+2 Al1,31

+3 AL2.,17
+4 AL2, 2]
+35 af2, 31
+& AL3, 13

+7 AL3, 21
+8 A[3, 31

This is logically a one-~dimensional array of vectors. In ATARI Pascal
all arrays are logically one—dimensional arrays of some other type.

RECORDs are stored in the same manner as global variables.

29

SETs are always stored as 32—bgte“items; Each element of the set is
stored as one bit. SETs are byte—oriented and the low order bit of
each byte is the first bit in that byte of the set. Shown below is the

set ‘A’ 27
Byte number _
00 01 02 03 04 05 0&

00 00 00 00 00 0O 00

The first bit is bit
bit is bit 20 and is

07 08 09 OA OB OC OD OE OF 10 ... 1F

— ——— - EREe e e — ——

00 FE FF FF 07 00 00 00 00 00 ... 00

&5 ($41)
found in

and is found in byte 8, bit 1. The last

byte 11,

bit 2.

is the least significant bit in the byte.

In this dicussion bi¢ O

30

v

3.2.2 Parameter Passing

When calling an_assembly language routine from ATARI Pascal or callxng
an ATARI Fascal routine. £rom assembly language. parameters are passed
on the stack. The parameter passing stack in. ATARI Pascal is different
than the 6502 hardware stack. This software stack is at.locations $400
through $6FF in memory. The hardware X register must be saved and
restored during execution of assembly language routines and is used as
. the pointer. to the software stack. You may load the fop of the stack
‘using. "LDA $600.K“ efc. Upon entry to the routine, the tap of the
hnrdmart stack conta;ns the return address. On the software stack.

in reverse’ ordcr tﬁa declaration, (A.B: INTEGER: C; CHAR), would result
in C on top ‘of B on top of A. Each. param!ter requzres at least one
"16-bit WORD of stack space. A character or boolean is passed as a
16-bit word with a high order byte of 00. VAR parameters are passed by
address. The address represents the byte of the variable with the
lowest memoru address

Non—scalar parameters {(excluding SETs) are almags passed bg address,
_If the parametnr is a value parameter then tode is generated by the
;_compxler in a Pascal rautzne to move the data. SET. paramoters are

‘passed by value on the stack ‘and then the xnterpreter is used tu store
them.

Thn example below shoms a tgpical parameter list at ontru to a.
‘procedure

PROCEDURE DEMO (1. : INTEGER; VAR Q:STRING: C,D:CHAR):
AT ENTRY STACK (8600, X):

'+0 D
+1 BYTE OF 00
+2 c

+3 BYTE OF 00
+4~ ADDRESS OF ACTUAL BTRING
+5 ADDRESS OF ACTUAL STRING

+& J (LSB)
+7 J (MSB)
+8 I (LSB)
+9 I «(mMSB)

The assembly language program must remove all parameters from the
evaluation stack before returning to the calling routine.

SETs are stored on the stack with the least significant byte on
bottom (high address).

Function values are returned on the stack. They are placed “"logically"
underneath the return address before the return is executed. Theay
therefore remain on the top of the stack after the calling program is
re~entered following the return. Assembly language functions may only
return the scalar types INTEGER, REAL, BOOLEAN and CHAR.

31

3.3 Program Segmentation—— Chaining

There are t:mes ‘when " programs exceed the memory ava;lable and. also
many timés when: segmentatxon of praograms for cnmp:latian and
maintenance purposes is desived, ATARI Pascal provides a "cha1n1ng"

mechanism in ‘which one program may transfer control to another
pragram

You dust declare ‘an’ untyped File (FILE;) and use’ the ASSIGN and’ RESET
pro:odurel to 1n:tia1£ze the file. You may then execute a ‘call to the
CHAIN proceduro. pasiing the fiame of the file varxable at a s:ngle
parameter. The run=time lxbrarq rovtine will then por#orm ‘the
appropriate functions to load in the file you openéd using the RESET
statement Prngram size does hot matter A small program may. chazn to
a large one and a large program may ‘chain to a small one. If you
desire to communicate between the chained program you may choose to

communicate in two ways: shared global variables and ABSOLUTE
variables.

It you'use the“shared giobal varzable ‘method, gou must guvaraniee that
at least the first saction of global variables is the same in the two
programs’ mzsh:ng to communicate.
need not be the same and the declaration of external variables in the
global section will not affect this mapping. In addition. to having
matching declarations, you must use the /D option switch ava:lable in
the linker (see section 2 3.2.4) to place the variables at the same

The remainder of the global' var:ablei

location in all programs wishing to

To use the ABSOLUTE variable method
record used as a communication area
absolute location in each module.

communicate.

you would tgp:callq define a
and then define this record at an

This method does not require using

the /D switch in the linker but does vequire knowledge of the memory

used by the program and system.

Listed below are two example programs that communicate with each other

using the ABSOLUTE variable method.

The first program will CHAIN to

the second program: which wil) print the results of the first

pragram’s sxecution:

a2

T

 Example:
. PROGRAM PROG1:

TYPE L

COMMAREA = RECORD B
END:

VAR ’

GLOBALS : ABSOLUTE L[$80001 COMMAREA;

CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1)
WITH eLOBALS DO '

BEGIN
1 := 3;
J = 3;
K:=1I%J
END;
ASSIGN(CHAINFIL, 'D1: PROG2. COM ');
RESET(CHAINFIL): ’
IF IORESULT <> O THEN
BEGIN
WRITELN(‘UNABLE TO OPEN D1:PROGZ2. COM’1};
EXIT
END;
CHAIN(CHAINFIL) o
END. {#* END PROG1 #)

(* PROGRAM #2 IN CHAIN DEMUNSTRATIDN *)
PROGRAM PRQOGZ2:

TYPE
COMMAREA = RECORD
I.J:,Kk : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [$80001 COMMAREA;

BEGIN (# PROGRAM #2 *)
WITH GLOBALS DO
WRITELN(‘RESULT OF “, I, TIMES ‘', J,* IS =', K}

END. _ (% RETURNS TO OPERATING SYSTEM WHEN COMPLETE #)

33

3.4 Built—in Procedures and Parameters

This section describes ATARI Pascal’s built—in procedures and
functions. Each routine is described syntactically, followed by a
description of the parameters and an example program using the
procedure of the function. Section 3.4.2.5 is a quick reference
of all built-in procedures and functions.

34

N

3.4.1 MOVE., HDVEFICHT. MOVELEFT

PROCEDURE MOVE (SOURCE, DESTINATION, NUM_BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTINATION. NUM_BYTES)
PROCEDURE MOVERIGHT(SOURCE, DESTINATION. NUM_BYTES)

These procedures move the number of bytes: contained in NUM: BYTES from
the location named in SOURCE to the location named. in: DESTINATION.
MOVE is a synonym for MOVELEFT. MOVELEFT moves from the left end of
the saurce: to the left end of the destination. MOVERIGHT :moves from
the-right end of the source to the right end of the destination (the
parameters passed to MOVERIGHT speczfg the 1eft hand end of the
source and destination).

Use MOVELEFT and MOVERIGHT to transfer a hyte from one data:
structure to another or to move; data:around within: a single data
structure. The.move: is done on. a byte level so the data structure
type is ignored. MOVERIGHT is:useful for transferving byies from the
low end of an array to the high end. Without this procedure, a FOR
loop would be required to pick up each character and put it down at a
higher address. MOVERIGHT is also much, much faster. MOVERIGHT is
ideal to use in an inser{ character routine whose purpose is to make
room for characters in a buffer,

MOVELEFT is useful for transfe%ring bytes from ohn'arraq'té another,
deleting chavacters from a buffer, or moving the valuves in one data
structure to another, : Lo

The source and destination may be any type of variable and bhoth need
not be of the same type. These may also be pointers to variables or
integers used as pointers. They may not be named or literal constants.
The number of bytes is an integer expression greater than zero,.

Wateh out for these problemsf

i. Bince no checking is peffbrméd as to whether the number of bytes is
greater than the size of the destination, spilling over into the
data storage adjacent to the destination will accur if the
destination is not large enough to hold the number of bytes.

2. Moving zero bytes moves nothing.

3. No type checking is done.

Example:

PROCEDURE MOQVE DEHO-
CONST
STRINGSZ = BO.
VAR
‘BUFFER :- STRINGtSTRINGSZJ;
LINE . STRING:

PROCEDURE INSRT(VAR DEBT - STRING; INDEX;: INTEGER:;
STRINGY; =~
BEGIN
IF LENGTH(SBURCE) <= STRINGSZ - LENGTH(DEST) THEN
BEGIN

HOVERIGHT(DESTE INDREX 2; DESTL INDEX+LENGTH(SOURCE) 3

© LENGTH{DEST)}~INDEX+1);
MOUELEFT(SQURCECIJ. DESTLINDEX], LENGTH (SOURCE
"DESTLO) : =CHR(ORD(DESTCOl) + LENGTH(SOURCE)}
T END;

" BEQIN. '
NRITELN(’MDVE _DEMO. ‘)i
BUFFER :=- 'dudq J. Bmith/ 335 Drzve/ Lovely, Ca.
-HRITELN(IUFFER).
LINE := “Roland:- B
INSRT(BUFFER, PDS('S’.BUFFER)+2:LINE)5
HRITELN(BUFFER).

END.

THE DUTPUT FRDM‘THIS PROCEDURE
HOVE DEMD

Judy J. Smith/ 355 Drive/ Lovely, Ca. 95664
Judy J. Smith/ 355 Roland Dive/ Lovely., Ca. 956464

VAR SOURCE :

)i

Q086647

36

—

3.4.2 EXIT

PROCEDURE EXIT;

EXIT is the equivalent of the RETURN statnment in FDRTRAN ‘ar; BASIC
It will leave the current procedure/function or main program. EXIT
will also load the vegisters .and re—enable znterrupts before eriting

if EXIT is used in an INTERRUPT procedure. It is usvally executed. as
a statement following a test. . . -

Example:

PRDCEDURE EXITTEST.. -
(#EXIT THE CURRENT FUNCTION OR MAIN PROGRAM. *)

PROCEDURE EXITPROC(BOOL : BOOLEAMN);

lEGIN .
IF BOOL THEN
BEGIN
WRITELN(/EXITING EXITPROC’);:
EXIT;
END;
WRITELM(‘STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY ");:
END;

BEGIN
WRITELN('EXITTEST....... “);
EXITPROC{(TRUE:
WRITELN(’IN EXITTEST AFTER 1$T caLl TO EXITPRQC’),
EXITPROC(FALSE);
WRITELN(’IN EXITTEST AFTER 2ND CALL TG EXITPROC’);
EXIT:

WRITELN(‘THIS LINE WILL NEVER BE PRINTED’);
END;

Qutput:

EXITTEST.......

EXITING EXITPROC

IN EXITTEST AFTER 18T CALL. TO EXITPROC
STILL IN EXITPROC, ABOQUT TD LEAVE NORMALLY
IN EXITTEST AFTER 2ND CaLL. TO EXITPROC

37

3.4.3 TSTBIT. SETBIT, CLRBIT —

FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) : BOOLEAN:
PROCEDURE SETBIT(VAR BASIC VAR. BIT_NUM); ’
_PRDCEDURE CLRBIT(VAR BASIC VAR. BIT;NUM);

 TSTBIT returns TRUE if the destgnated bit in the basic_vav is on, and
* returns FALSE if the bit is 0f¢. SETBIT sets the designated bit in the
parameter. CLRBIT clears the designated bit in the parameeer '

BASIC VAR is any B8 or 16 bit variable such as integer, char, bqte;
word, or boolean. BIT_NUM is O0..15 with bit O on the right. Attempting

to set bit 10 of an 8 bit var:able does not cauvse an error but has no
effect on the end resuvlt,

These procedures are useful for generating wait loops or altering
incoming data by flipping a bit where needed. Another application is
in manipulating a bit mapped screen. :

Example:

PROCEDURE TST"BET CLR BITS:

VAR
I : INTEGER: ~
BEGIN ’
WRITELN('TST. SET CLR _BITS....... ¥
I := 0O; .
SETBIT(I,S);
IF 1 = 32 THEN
IF TSTBIT(1.5) THEN
WRITELN('I=*, I};
CLRBIT(I,S5);
IF I = O THEN
IF NOT (TSTBIT(I.S)} THEN
WRITELN{‘I=*,1);
END;

Qutput:
TST_SET_CLR_BITS.......
I=32

I=0

38

N

VAR

3.4.4 GHR. SHL

FUNCTION SHR(BASIC_VAR, NUM) : INTEGER:
FUNCTION SHL(BASIC_VAR, NUM) : INTEGER;

SHR shifts the BASIC_VAR by NUM bits to the right, inserting O bits.
BHL shifts the BASIC_VAR by NUM bits to Fthe lefd, inserting O bits.

BASIC VAR is an .8 ov 14 bit variable. NUM is an integer expressxon

;}The uses of Sﬂﬂ\and SHL ane ganerallu obvxous Fof-gxample. suppose a

10 bit value is to be obtained from two separate-input_parts. You can
use SHL to read them in:

PORTL : ABSOLUTE -[$D0001 BYTE:
PORTZ : ABSOLUTE [$D2321 BYTE:

X := SHL(PORT] & $1iF, 3) ! (PORT2 & $1F);

The above example reads from portl, masks out the three high bits
returned from the INP array, and shifts the result left. Next., this
result is logically OR‘d with the input from portz. which has also
bsen masked.

The following procedure demonstrates the'expected reéult of executing
these two functions.

Example:

PROCEDURE SHIFT_DEMO;

VAR I : INTEGER;

BEGIN
WRITELN('SHIFT_DEMO ‘)
I := 4;
WRITENLNC "I=',1};
WRITELN('SHR(I.2)=',SHR(I. 2)),
WRITELN(‘'SHL(I, 4)=/,SHL(I,4));

END:

Queput:
SHIFT_DEMO........
I=4

SHR(I; 2)=1
SHL(I, 4)=64

a9

3.4.5 HI. LO, SwWAP

FUNCTION HI(BASIC_VAR) : INTEGER;
FUNCTION LO(BASIC_VAR) : INTEGER;
FUNCTION SQAP(BASIC_VAR) : INTEGER;

HI returns the upper 8 bits of BASIC_VAR (an 8 or 16 bit var:able) in
the lower 8 bits of ‘the result. LO returns the lower 8 bits with the
upper 8 bits forced to zerTo. SWAP returny the uUpper 8 bits of
BASIC_VAR in the lower 8 bits of the result and the lower 8 bits of
BASIC_VAR in the upper 8 bits of the result, ‘Passing ‘an B8 bit varzable
to HI'dausaS'the result to be O and passing 8 bits ‘60 LO does nothing.

These functions enhance ATARI Pascal‘s abilities to read and write to
170 ports. If a data item has 18 bits of information to send to a port
that can handle 8 bits at a time, use ‘LO-and HI ¢to -send the low byte
followed by the high byte. Similarly, reading 14 bits of data from a
port that sends 8 bits at a time may be performed by SNAszng the
first 8 bite into the high bgte

VAR
PORTS : AEBDLUTE {sD2341 BYTE:

PORTh " = LD(B&.
PORTS := HI(B);
B :m SWAP(PDRT&) H PORTé-

Tho followzng cxample shuws what the expected results of these
functions should be;

Example:

PROCEDURE HI_LO_ SWaP;

VAR
HL : INTECER:

BEGIN
WRITELN('HI_t.O_SWAP.......)
HL := $104;

WRITELNC "HL="', HL};

IF HI(HL) = 1 THEN
WRITELNC'HI(MLI=’, HI(HL.})

iF LO(HL)Y = 4 THEN
WRITELNC ‘LO(HLY=", LO(HL));

IF SWAP(HL) = 30401 THEN
WRITELN('SWAP(HL)=, SWAP (HL)})i

END;

Butput:
HI_LO_SWAP.
HL=260

HI(HLY=1
LO(HL)=4
SWAP (HL }=102%5

40

3.4.56 ADDR
FUNCTION ADDR(VARIABLE REFERENCE) : INTEGER;
- ADDR -vaturns the address of the variable referenced. Variable . =

reference includes procedure/function -names. subscripted variables and
"record fields. I¢{ does nof include named constants: user defined .

- . types, or any item -that does not occupy code or data space.

This function is used to return the address of anything: compile ‘time
tables generated by INLINE, the addrese of a data structure to be
used in @ move statement, and so on.

Example:

PROCEDURE ADDR_DEMO(PARAM : INTEGER);
VAR
REC : RECORD
J : INTEGER:
BOOL. : BOOLEAN:

END:;
ADDRESS : INTEGER:;)
R : REAL: .
81 : ARRAYCL1..10] OF CHAR:
BEGIN
WRITELN('ADDR_DEMO.)

WRITELN(’ADDR(ADDR_DEMO)=‘, ADDR (ADDR DEMO)):
NRITELN('ADDR(PARAM)-'.ADDR(PARAM))s
WRITELN(‘ADDR(REC)=’, ADDR(REC));
WRITELN(‘ADDR(REC. J) ‘', ADDR{(REC. J});
WRITELN(‘ADDR (ADDRESS)=‘, ADDR (ADDRESS} };
WRITELN(ADDR(R}=’, ADDR{(R});
WRITELN(‘ADDR(S1)=, ADR{(S1));

END:

Output is system dependent.

41

3.4.7 SIZEOF
FUNCTION SIZEOF (VARIABLE OR TYPE NAME) : INTEGER; -

SIZEOF returns the size of -the parameter in bqtes 1t is used in move
statements for the number of bytes to be moved. N:th ‘BIZEUF you need
not: keep changing constants as the program evanes Parameter may be
any variable: character, array, record. ete, or any user-defined type,

Exemple

PRDCEDURE SIZE DEMD.
VAR
B : ARRAY[L1l.. 1031 OF CHAR:
A : ARRAYL1.. 151 OF CHAR;
BEGIN
WRITELN(/SIZE_DEMO....... Y
A = TRRRRBBESSRRREEE
B := ‘0123456789 "; e
WRITELN(‘SIZEOF(A)="', SIZEOF(A), * SIZEOF(B)=*, SIZEOF(B)};
MOVE(B. A, SIZEQOF (B) };
WRITELN(‘A= 7, A};
END;

Output:

SIZEOF(A)=15 SIZEOF(B)=10
A= 0123456789 %%%%x

42

3.4.8 FILLCHAR

PROCEDURE FILLCHAR(DESTINATION, LENGTH: CHARACTER)

.. .This procedure. fills the DESTINATION (a packed-arrvay -of characters)

~with the number of CHARACTERs specified by LENGTH. DESTINATION is
packed array of characters. It may be subscripted. LENGTH is am
integer expression. If LENGTH is greater than the length of
DESTINATION: adgjacent code or data is overwritten. Also, if it is
negative, adjacent memory can be overwritten. CHARACTER is a literal
or variable of type char. :

The purpose of FILLCHAR is to provide a fast method of filling -in .
large data structures with the same data. For instance, blanking out
buffers is done with FILLCHAR. : o

Example:

PROCEDURE FILL_DEMO;

VAR
BUFFER : PACKED ARRAYL1..256]1 OF CHAR;
BECIN Lo :
FILLCHAR (BUFFER, 254, © '}; {# BLANK THE BUFFERS #)
END:;

43

3.4.92 LENGTH)
FUNCTION LENGTH(STRING) : INTEGER:
~ This functEQn_reﬁurns the integer value of the length of the string.

Example:

PROCEDURE LENGTH DEMO; -
VaR
81 : STRING L[40Q1;:
81 vw 'This s¢ring ‘ie’ 33 chardcters long*;
WRITELNCLENGTH OF ‘. 81, ‘=‘, LENGTH(S1));
~ WRITELNCLENGTH OF EMPTY STRING =/, LENGTH(’));
END;

Qutput:

LENGTH OF This string is 33 characters long=33
LENGTH OF EMPTY STRING = ©

44

3.4.10 CONCAT

FUNCTION CONCAT ¢ SOURCE1, SOURCE2.

i+ SOURCE) : STRING:

~This function returns.a string.in whlch all .soyrces in the parameter
1ist. are concatenatgd Tho . SpuUrces may.be. strgng variables:, string

literals, .or, chgracters A SDURCE af,
with no problem, I#.the tqtalhlength
the sgring is. truncpted ‘at 256 bytes.
next section concerning restr:ctxons

Example:

PROCEDURE CONCAT_DEMO;

VAR
81.52 : STRING:

BEGIN :
81 := ‘“left link, vight link~s;
82 := ‘root root root’;
WRITELN(S1: '/ /:82)i
1 := CONCAT(S:, ? *,82, 11t111¢y;
WRITELN(S1);

END;

Quéput:

aleft lxnko r:ghtji
lett lznk: Tight¢ link root root Taot

lxnk/root root root

.zer0 length.can .be concatenated
of all -SOURCES:exceeds 56 bytes
.Gee the note under- COPY. in the

when using both CONCAT and COPY.

llllll.

.......

45

3.4.11 COPY
FUNCTION COPY (SQURCE, LOCATION, NUM_BYTE) : STRING:

“Copy Tetords-a string containing ehe*ﬁ&mbgr“o§”chafiéfﬁfs specified in
NUM_BYTES from 'SOURCE “beginning at the index specitied in LDCATIUﬂ.

SOURCE “#iust be "a 'strifif. LOCATION and NUM_BYTES aré integer
- éxpressions.’’ “If LOCATION is out of bounds or is negétive, no error
- occurs. If'NUM_BYTES is'négative or NUM_BYTES plus LOCATION exceeds

‘the length of the SOURCE, truncation occurs.
Example:

PROCEDURE COPY_DEMO;
BECIN '
LONG_STR := ‘Hi #rom Cardiff-by-~the sea’;
WRITELN (COPY(LONG_STR, 9, LENGTH(LONG_STR)-9+1});
END:

Output;
Cardiff~by—~the~sea
Note:

COPY and CONCAT are “"pseudo" string returning functions and have only —
one statically allocated buffer far £he return valoe: Therefére; if

these functions are used more than once within the same sipression,

the value of each occurrence of these functions hecomes the value of

the last occurrence. For instance, “IF (CONCAT(A,STRINGI)} =

(CONCAT(A, STRING2))" will always be true because the concatenation of

A and STRING1 is replaced by that of A and STRING2. Also, "WRITELN
(COPY(STRING1, 1. 4), COPY(STRING1,5,4))" writes the second set of four
characters in STRINGI twice.

P

45

3.4.12 POS
FUNCTION POS(PATTERN, SOURCE) : INTEGER:

This function returns the integer value of the posltzon of. the first
occurvrence of PATTERN. in SOURCE. If the. pattern is not found: a ero

is returned ' SDURCE is a strxng and PATTERN is a str;ng. a character,
or a literal.

Exaﬁple:

PROCEDURE POS_DEMO:.

VaR ’
STR, PATTERN : STRING;
CH : CHAR;

BEGIN
STR := ‘ABCDEFGHIJKLMNO;
PATTERN := ‘FGHIJ'; “
CH := /B, ' T ' ' '
WRITELN(‘pos of ‘,PATTERN, ’ in %L.B8TR, ’ is. PDS(PATTERN;STR)):
WRITELNC ‘pos of *,CH.,’ in 7, 8TR, ’is "-PDS(GH;STR)):
WRITELN(‘pos p# ‘7277 in ‘,8TR, '’ is . POS(’z’,BTR));

ENDi

Qutput:

pos of FGHIJ in ABCDEFOHIJKLMND is &
pos of B in ABCDEFOHMIJKLMNG is 2

pos of ‘2z’ in ABCDEFGHIJKLMNG is O

47

3.4.13 DELETE
PROCEDURE DELETE (TARGET, INDEX, SI1ZE);

This procedure is used to remuve GZZE characters from TARGET.A
”*hegxnnzng at the byte named 1n INDEX. TARCET is a string. INDEX and

- SIZE ate integer expressions. I#& SIZE is zero, fo action is taken If
it is negative, sarious errors result., If the INDEX plus the SIZE is
greater than the TARCET or if the TARGET is empty: the data and
surrounding memory can be destroyed.

Example:

PROCEDURE DELETE_DEMO;

VAR
-LONG_STR : STRING; _

BEGIN o
LONG_STR =’ get rid of the leading blanks’;
HRITELN(LUNG_ﬁTR).

DELETE(LONG_STR, 1, POS(‘g ‘. LONG_STR)=1);
WRITELN(LONG_STR);
END;

Dutput:

get rid of the leading blanks
get rid of the leading blanks

48

3.4.14 INSERT
PROCEDURE INSERT(SOURCE, DESTINATION, INDEX);

.. This procedure is used to insert. tho SOURCE into the DESTINATION at
-the location specxfxod in_ INDEX. ‘DESTINATION is a.-string.. . SOURCE is a

'a.;character or ‘string. lxteral o7, var:able INDEX is .an integer

expression, _ 56URQE can ‘he emptq IG INDEX .is out. of baunds or '
DESTINATION is empty, destruction of data occurs. If inserting SOURCE
into DESTINATION causes DESTINATION to be longer fthan allowed
DESTINATIDN is truncated.

Example

PRDCEDURE'INSERT;ﬂEMO:

VAR
LONG_STR : STRING:
s1 ., STRING £103s

BEGIN
LONG STR := ‘Remember May 97;
81 := 'Mother’s Day., ';
INSERT(S1. LONG_STR, 10};
WRITELN(LONG_STR): '
INSERT(‘to celebrate’, LONG_STR, 10);
WRITELN(LONG_STR):

END;

Outpqya_

Remember Mother ‘s Day, May 9
Remember to celebrate Mother’s Day. Maq L4

49

3.4.15 ASBSIGN
PROCEDURE ASSION (FILE., NAME);
"Use this procedure to assign an external filename to a file var:able

prior to a RESET éer REWRITE. FILE is a filename, NAME ig'a literal or
a variable’ ‘string contazn:ng ‘the name of the #119 ‘to be created FILE

. must be of tqpe TEXT to use the spec:al device names belom

Note that 9tandard Pascal defznes a "local®™ f£ile. ATARI Pascal
implements this faczlzeg using temporary filenames in the form
PASTMPxx where "xx" is sequentially assigned, starting at zero at the
beginning of each program. If an external file REWRITE is not
preceeded by an ASSIGN, then a temporary filename will also be
assigned to this file before creation,

NAME is normally a diskette filename in the standard format:
dn: filename. ext but can also be a special device name.

Device Names

Console screen editor device
Console screen output device
Console keyboard input device
Printer output device

Ixom

NOTE: Cassette (C:) files are not supported by ATARI Pascal.

Examples of ASSIGN usage:

ASSICGN(PRINTFILE: ‘P: ");
ABSIGN(F, ‘D2: MT2B80. OVL /);
ASSIGN(KEYBOARD, *K: *);
ASSIGN(CRT, ‘S: *);

Note: After ASSIGN(CRT: ‘S: ‘) you must use REWRITE, as the assign
does not open the file. .

50

3.4. 18 WNB, GNB

FUNCTION GNBIFILEVAR: FILE OF PAGC): CHAR:
FUNCTION WNB(FILEVAR: FILE OF CHAR: CH:CHAR) : ' BOOLEAN;
‘These ' #unctzpns altod Yoy “to

_ have BYTE-level access to a file in
_a high’ spded”mann r.- PAOC "i's ‘any

Y type that is Fundamentallg a Packed

:"Arrag Of Char. The”szze of the packed arrau 19 optimally in the range

128. . 4095,

© GNB will let you vead a file a byte at ‘a t;me It roturns a value of
type CHAR. The EOF function will be valid when ‘the phgs::al -
end—of-file is reached but not based upon any data in the file.

WNE will let you write a file a byte at a time. It requires a file and
a character to write. It returns a boolean value that is true if there
was an error while writing that byte to the file. No interpretation is
done on the bytes that are writéen.

GNB and WNB are used (as opposed to F~, CGET/PUT combinations) because
they are significantly faster.

21

3.4.17 BLOCKREAD, BLOCKWRITE ~

BLOCKREAD (F:FILEVAR; BUF:ANY: VAR IOR: INTEGER; SZ.RB: INTEQER);:
BLDCKNRITE(F:FILEVAR; BUF: ANY: VAR IOR: INTEGER; 'SZ,RB: INTEGER);

These procedures are used for direct diskette access. FILEVAR is an
_untgped File (FILE. BUF is anq vartable large cnough 4o hold the
‘data. IOR is an 1nteger ‘that réceives the returned value from the DOS.
8Z is the number of bytes to transfer and RB should always be 0.

The data is transferred either to or from the user’s BUF variable for
the spec:#ied number of hqtes

~— ./l

s2

3.4.18 OPEN
PROCEDURE OPEN (FILE, TITLE. RESULT);

The OPEN procedure .increases the flexzbzl:tg of ATARI Pas:al FILE is
any. file type wvarjable.: TITLE is a string containing the filename.
RESULT is.a VAR IMIEGERJparameter and upon return Ffrom OPEN has. the
same value as. IGRESULT The maximum number. of tiles that maq be opened
- at. ang one tzme is three not including Console (E:, S:, or K:2 files.

The OPEN procedure 1Szthe sameygs;cxg;utlng:an ASSIGN(FILEa TITLE),
RESET(FILE) and RESULT := IORESULT sequence.

Examples:

OPEN (INFILE, ‘D:FNAME.DAT’. RESULT):

53

3.4,1? CLOSE, CLOSEDEL

PROCEDURE CLOSE { FILE, RESULT);
PROCEDURE CLOSEDEL (FILE, RESULT);

The CLOSE-and CLOSEDEL procedures’ are ysed for-closing and closing—
‘with~delete respectively. The CLOSE procedure must be called to
guarantee that data written to a file using any methbd ‘is properly
purged from the file buffer to the diskette. The CLOSEDEL is normally
veed on temporary files to delete them after uvse. FILE and RESULT are
“the same as used in OPEN (see section 3.4, 18),

Files ave implicitly closed when an open file is RESET.

The CLOSE procedure is used in the file section of the appendix.

54

3.4.20 PURGE
PROCEDURE PURGE (FILE);

The PURCE. procedure is used to delete 4 file whose name is stored in a
string. You must flrst ASSICON the name to the file and then execute

PURGE.

Example:

ASSIGN(F, ‘D2: BADFILE. BAD"); '
PURGE(F}; (* DELETE D2: BADFILE. BAD %)

353

3. 4. 21 IORESULT
FUNCTION IORESULT : INTEGER

After each I/0 operation the value retyrned by the IORESULT function
is set by the run—-time library routines. On the ATARI Home Computer,
the general rule is that a non-zero value means an error and zero is a
good result.

Example::

ASSION(F, ’D2: HELLO');
RESET (F);

IF IORESULT <> O THEN
WRITELN(’C: HELLO IS NOT PRESENT‘);

-]

3.4.22 MEMAVAIL, MAXAVAIL

FUNCTION = MEMAVAIL : INTEGER;
FUNCTION MAXAVAIL : INTEGER;

The functions MEMAVAIL and MAXAVAIL are used in conjunction with NEW
and DISPOSE -to. manage the HEAP memory .area .in ATARI Pascal. The
MEMAVAIL . Functlon returns the largest total available memory at any
given time 3rrespo=ezve of fragmentab;on The MAXAVAIL function will
_first garbage ‘collect and then report the largest block available.

The MAXAVAIL function can be used .to force a garbage collection before
a time—sensitive section of programmzng

The ATARI Pascal-system Ful!q supports the NEH and DISPOSE mechanzsm
defined by the Pascal Standard. The HEAP Aarea grows from the end of

the data area and the stack frame (for recursion) grows from the top
of memory downward..

57

3.4.23 Quick Reference Guide to Built—in Procedures and Parameters
(Alphabetical within each group:)
) Character arrag manxpulatxnn routznes

LENGTH.

PRGCED@RE FILLCHAR { BESTINATION, CHARACTER).
PROCEDURE "MOVELEFT (SOURCE, DESTINATION, NUM BYTES):
PRDCEDURE MOVERIGHT(SDURCE. DESTINATION, NUM_BYTES);
'B1t -and bqte manipulat1on routznes
PROCEDURE CLRBIT(BASIC_VAR, BIT_NUM); o
- FUNCTION HI® - ¢ BASIC. VAR) : INTEGER;:
FUNCTION L0 ¢ BASIC _VAaR) : : INTEGER;
PROCEDURE SETBIT(BASIC_VAR, BIT NUM), o
FUNCTION SHL { BASIC_VAR. NUM) INTEGER
FUNCTION SHR (BASIC_VAR:; NUM?} INTEGER;
FUNCTION SwaP (BASIC_VaR) INTEGER:
FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) BOOLEAN;
S84ring handling routines
FUNCTION CONCAT (SOURCE1l, SOURCE2,...,SO0URCEn) : STRING;
FUNCTION COPY (SOURCE, LOCATION, NUM_BYTES) : STRING:
PROCEDURE DELETE (TARGET, INDEX:. SIZE);
PROCEDURE INSERT (SOURCE, DESTINATION, INDEX):
FUNCTION LENGTH (STRING) INTEGER:
FUNCTION POS (PATTERN, SOURCE) INTEGER:
File handling routines
PROCEDURE ASSIGN { FILE, NAME);
PROCEDURE BLOCKREAD (FILE, BUF, IOR: NUMBYTES: RELBLK);
PROCEDURE BLOCKWRITE(FILE, BUF. IOR, NUMBYTES. RELBLN);
PROCEDURE CLOSE (FILE, RESULT)J:
PROCEDURE CLOSEDEL (FILE, RESULT); :
FUNCTION CNB (FILE) : CHAR
PROCEDURE IORESULT : INTEGER:
PROCEDURE OPEN (FILE, TITLE, RESULT 3;
PROCEDURE PURGE { FILE);
FUNCTION WNB (FILE, CHAR) BOOLEAN;
Miscellaneous rToutines
FUNCTION ADDR (VARIABLE REFERENCE) INTEGER:
PROCEDURE EXIT:
FUNCTION MAXAVAIL : INTEGER:
FUNCTION MEMAVAIL : INTEGER:
FUNCTION SIZEDOF(VARIABLE OR TYPE NAME) INTEGER;

o8

3.5 Non-Standard Data»Aﬁcéss
3.5.1 absolute Variables
tCabsolute varl ::= ABSOLUTE [<constant>]l <varl

ABSOLUTE variables may be declared if you know the address at
compile time. You declare variable(s) to be absolute using

special syntax in a VAR declaration. ABSOLUTE variables are not
allocated any space in your data segment by the compiler and you are
responsible -for making sure that no compiler-allocated variables
conflict with the absolute variables. NOTE: STRING VARIABLES MAY NOT
EXIST below [$100] in memory.

Examples:

I: ABSOLUTE [$80003 INTEGER;
SCREEN: ABSOLUTE [$C000] ARRAYLO.. 151 OF ARRAYCO.. 631 OF CHAR;

59

3.4 INLINE

ATARI Pascal has a very useful built—in feature called INLINE. This
feature lets you insert data in the middie of an ATARI

Pascal proctedure or function. In this way small machine code or P-code
sequences and constant tables may be inserted into an ATARI Pascal
program.

3.6.1 Byntax

The syntax for the INLINE feature is very similar to that of a
procedure call in Pascal. The ward INLINE is used followed by a left
parenthesis "(" fgollowed by any number of arguments separated by the
slash "/" character and terminated by a Tight parenthesis ")*. The
arguments between the slashes must be constants or variable references
that evaluate to constants. These constants can be of any of the
following types : CHAR. STRING, BOOLEAM. INTEGER or REAL. Note that a
STRING in quotes does not generate a length byte but simply the data
for the string.

Literal constants of type integer will be allocated one byte if the

value falls in the range O to 255, Named. declared: integer constants
which will slways be allocated two hytes.

3. 6.2 Applications e
The INLINE facility can be used to insert code or to build

compile time tables. The following two sections give examples of each
of these uses.

&0

The program fragment beiow demonstrates how the INLINE facility can be
used to construct a compile time table. :

Examp}e:
PROGRAM DEMO_INLINE;

TYPE
IDFIELD = ARRAY [1..4]1 OF ARRAY [1..101 OF CHAR; -

VAR
TPTR : ~IDFIELD;

PROCEDURE TABLE:

BEGIN
CINLINE(‘ATARI ‘7
‘HOME t/
‘COMPUTER * /
‘SYSTEMS. .. ©)i
END;
_BEGIN (# MAIN PROGRAM #)
TPTR := ADDR(TABLE)+S; (# +5 for P-code onliy #}
WRITELN(TPTR™~LA1); {(# SHOULD WRITE ‘COMPUTER MR

END.

&1

3.7 Graphics and Seound Documentation

The graphics, sound, and controller package consists of an include
file, GSBPROCS, and a Pascal module, GRSND.ERL. The include file
defines the entry points available in the Pascal module. The Pascal
module must be linked with your program.

To use the package: type (#$ID:GSPROCSH) following the global
. variables of your program: and execute INITGRAPHICS as the first
statement in your main program.

Example:

PROGRAM GRSND;

-
(# INCLUDE THE GRAPHICS AND SOUND DEFINITIONS #)
(#$1ID: GSPROCSH)

{#+ LOCAL PROCEDURES #)

PROCEDURE XXXX;
BEGIN

BEGIN

{# MAIN PROGRAM =)
BEGIN ,
INITGRAPHICS(S}3: (# INITIALIZE GRAPHICS PACKAGE WITH A MAXIMUM
CRAPHICS MODE OF 5 #)

a2

The following sections describe each of the items available in the

graphics and sound package.
3.7.1 Screen Types
TYPEs:

SCRN_TYPE = (SPLIT_SCREEN, FULL_SCREEN);:
CLEAR_TYPE = (CLEAR_SCREEN. DO_NOT_CLEAR_SCREEN);

These screen types are used by the GRAPHICS procedure o de#ine the

type of screen and whether or not the screen will be cleared during
the GRAPHICS procedure.

3.7.2 Variables
VARSs:

SCRNFILE : EXTERNAL TEXT:
GRRESULT : EXTERNAL INTEGER:

SCRNFILE may be used to do standard Pascal I/0 to the screen such as:

WRITE(SCRNFILE, ‘A");

This variable will send an "A" to the screen and depending on the
current mode, the “A" will be displayed in some manner. Note this
technique is normally used only in graphics modes 1 and 2. For the
other graphics modes, use the procedures described below.

GRRESULT is used to determine if any errors occcurred during one of the

graphics procedures. The following are the procedures and functions
that alter GRRESULT.

INITGRAPHICS GRRESULT = O OK, 255 = ERROR
GRAPHICS GRRESULT = O OK, 255 = ERROR
PLOT GRRESULT = RESULT FROM XIO CALL
LOCATE GRRESULT = RESULT FROM XIO CALL
FILL GRRESULT = RESULT FROM XIO CALL
DRAWTO GRRESULT = RESULT FROM XIO CALL

&3

3.7.3 Graphjc Procedures and Functions
3.7.3.1 Initialize Procedure
PROCEDURE INITGRAPHICS(MAX_MODE: INTEGER):

INITGRAPHICS must be the first statement of a program that uses the
graphics and sound module. There is one parameter:

MAX_MODE Maximum mode used by this program should be a value
from O to 9.

If an erraor occurs: the GRRESULT = 255; otherwise; GRRESULT = O.

3.7.3.2 OGraphics Procedure
PROCEDURE GRAPHICS(MODE: INTEGER; SCREEN: SCRN_TYPE: CLEAR: CLEAR_TYPE);

GRAPHICS performs the same Punction as the GRAPHICS statement in ATARI
BASIC, except it has three parameters instead of one.

MODE The desired graphics mode O to MAX_MODE
SCREEN FULL _SCREEN or SPLIT_SCREEN
CLEAR CLEAR_SCREEN or DO_NOT_CLEAR_SCREEN

I# an error occurs:, then GRRESULT = 255; otherwise, GRRESULT = O.

3.7.3.3 Textmode Procedure

PROCEDURE TEXTMODE:

TEXTMODE closes "S:" and reopens “E:". GRRESULT is vnchanged.

3.7.3.4 Setcolier Procedure
PROCEDURE SETCOLDR(REGISTER. HUE, LUMINANCE: INTEGER);

SETCOLOR performs the same function as the SETCOLOR statement in ATARI
BASIC. GRRESULT is unchanged.

REGISTER & value from O to 4, Refer to section 9 of the ATARI
. 400/800 BASIC Reference Manuval under SETCOLOR.

HUE A value from O $o 135 Refer to section 9 of the ATARI
4007800 BASIC Reference Manual under SETCOLDR.

LUMINANCE 4 even value from O Yo 14. Refer o sectio 9 of the
ATARI 400/800 BASIC Reference Manual under SETCOLOR.

64

'3.7.3.5 Color Procedure_
PROCEDURE COLOR(COLOR_VALUE: INTEGER)
COLOR performs the same function as the COLOR statement in BASIC.

COLOR_VALUE A value from 0 to 255. Refer to section @ of the ATARI
400/800 BASIC Reference Manual under COLOR.

3.7.3. 6 Plot Procedure
PROCEDURE PLOT(X.Y: INTEGER);

PLOT performs the same function as the PLOT statement in ATARI BASIC.
It plots a point in the current color at the screen position X.Y.

X the horizontal coordinate oh.the sSCT@en.
Y the vertical coordinate on the screen.

GRRESULT = value of an XID PUT character cali.

3.7.3.7 focate Procedure
FUNCTION LOCATE(X,Y: INTEGER): INTEGER;

LOCATE performs the same function as the LOCATE statement in ATARI
BASIC. It returns the pixel value at the screen position X.VY.

X the horizontél coordinate on the screen.
Y the vertical ctoordinate on the screen.

GRRESULT = value of an XI0O GET character call.

3.7.3.8 Position Procedyre

PROCEDURE POSITION(X, Y: INTEGER);
POSITION performs the same function as the POSITION statement in ATARI
BASIC. It moves the invisible graphics cursor to position X,Y. Note
the cursor is not moved until the next I/0 function is performed.
X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.
3.7.3.9 Drawtoc Procedure
PROCEDURE DRAWTO(X, Y: INTEGER);
DRAWTO pérforms the same function as the DRAWTD statement in ATARI

BASIC. It draws a line from the current graphics position to position
X, ¥ in the current color.

65

X the horizontal goordinate on the screen.
Y the vertical coordinate on the screen.

GRRESULT = value of an XIO DRAWTO call.

3.7.3. 10 Fill Procedure

PROCEDURE FILL(X.Y: INTEGER);))

FILL performs the 'same function as the XID 18 call in ATARI BASIC

except it performs a plot at position X, Y to move the cursor to X, Y at
the end of the FILL.

the horizontal coordinate on the screen.
Y the vertical caordinate on the screen.

GGRESULT = value of an XID FILL call.
3.7.4 Sound Procedures and Functions

3.7.4.1 Sound Procedure

PROCEDURE SOUND(VOICE, PITCH, DISTORTIOM, VOLUME: INTEGER)

SOUND performs the same function as the SOUND statement in ATARI
BASIC. 1t turns on the sound channel indicated by VOICE at the
indicated PITCH: DISTORTION, and VOLUME.

VOICE One of the four sound channels at 0 to 3.

PITCH A value between O and 255. Refer to section 10 of the
ATARI BASIC manual under SOUND.

DISTORTIGN A even value from O to 14, Refer to section 10 af the
ATARI BASIC manual under SOUND.

YOLUME A value from QO to 15. O is off; 15 is maximum velume,

3.7.4.2 Sounde+f Procedure
PROCEDURE SOUNDOFF;

SOUNDOFF turns off the sowund to all fhe sound channels.

2.7.5 Controller Functions

'3.7.5.1 Paddles

bé

2.7.5 1.1 Paddle Function
FUNCTION PADDLE(PDLNUM: INTEGER): INTEGER;

PADDLE performs the same function as the PADDLE statement in ATARI
BABIC. It returns the current value of one of the eight paddles,

PDLNUM .Is the paddle number to return; must be a value betwesen
0 and 7.
3.7.5.1.2 Trigger Function

FUNCTION PTRIG(PDLNUM: INTEGER): INTEGER:

PTRIC performs the same function as the PTRIG statement in ATARI

BASIC. It returns the current trigger value of one of the eight
paddles.

PDLNUM Is the paddle number to return; must be a value between
0 and 7.

3.7.5.2 Joysticks
3.7.5.2.1 Stick Function
FUNCTION STICK(STKNUM: INTEGER): INTEGER;

STICK performs the same function as the STICK statement in ATAR!
BASIC. It returns the current value of one of the four Joysticks,

STUNUM - Is the joystick number to return; must de a value
between 0 and 3.

&7

CHAPTER 4: RUN~-TIME ERROR HANDLING

The ATARI Pascal system supports two types of run—time éhe:king:
range and exception.

Range checking is performed on array subscripts and on subrange
assignments. The default condition of the system is that these checks
are disabled. You may enable them around any section of coding desired
using the SR and €X toggles (see sections 2.2.3.4 and 2.2.3.5). These
sections describe the implementation of this mechanism and how you may
take advantage of this mechanism to handle run~time errors in a
hon—-standard manner.

The general philosophy is that ervor checks and error routines will
set Boolean flags. These Boolean flags along with an error code will
be loaded onto the stack and the built=-in routine @ERR is called with
these two parameters. The @ERR routine will then %test the Boolean
parameter. If it is false then no error has occurred and the @ERR
routine will exit back to the compiled code and execution continues.
I# it is true the @RERR routine will print an error message and lets
you continue or abort.

Listed below are the error numbers passed to the @ERR routine:

Value ' Heaning
1 Divide—by-0Q check
2 Heap overflow check
3 String overflow check
4 Range check

4.1 Range Checking

When range checking is enabled the compiler generates calls to @CHK
for each array subscript and subrange assignment. The @CHK routine
leaves a Boolean value on the stack and the compiler generates calls
to @ERR after the @CHK call. If range checking is disabled and a
subscript falls outside the valid range: unpredictable results will
eccur. For subrange assignments, the value will be truncated at the
byte level.

4. 2 Exception Checking

When exception checking is enabled, the compiler will load the errar
flags (zero divide, string overflow, and heap overflow) as needed and
call the @ERR routine after each operation that can set the flags. I¢
exception checking is disabled the run~time routines attempts to
provide a friendly action if possible: divide by zero results in a

&8

maximum value being returned, heap overflow does nothing, and string
overflow truncates.

&, 3 User Supplied Handlers

You can write your own @ERR routine to be used instead of the system
routine. You should declare the routine as:

PROCEDURE @ERR (ERROR: BOOLEAN:; ERRNUM: INTEGER};

The routine will be called: as mentioned above, each time an error
check is needed and this routine should check the ERRDR variable and
exit if it is FALSE. You may decide the appropriate action if

the value is ¢rue. The values of ERRNUM are as shown in section 9. 0.

4.4 Fatal Errors

“Fatal Errors" message can be deciphered for debugging purposes but
may be confusing. The error can be translated to the Pascal error
message and to the ATARI standard error message. The following example
will illustrate the translation process:

Fatal Error 64.88 ~-> Pascal Error . ATARI Error

tJsing base 14 {(non—-standard. &4 -— 100 and B8 -~ 1354
16 10 16 10

A Pascal 100 error for our sgstaﬁ refers to an operating system error.
In this example we would then look at the ATARI Error 136 message to
seg that our error relates to an “EQF".

The following are predefined Pascal fatal errors.

64: Error while chaining.

&35: Bad pseudo code,

66: Bad pseudo code.

67: Undefined pseudo opcode.

68: Stack overflow (program too complex).

&9

CHAPTER 5: STRUCTURE/FORMAT OF A PASCAL PROGRAM

This chapter describes the data types and how they are stored. It also
discusses the use of strings,

A descriptiun of the layout of a .COM file in memory under DOS 2. 0S is
presented.

9.1 Data Types

This section describes how the standard Pascal data types are
implemented in ATARI Pascal. Table - summarizes the data types.

Data Type Size Range

CHAR 1 @-bit-byte O..2%85

BOOLEAN 1 B-bit-byte false. . trus
INTEGER 1 B-bit-byte 0..2565

INTEGER 2 B-bit~bytes -32768. . 32767
BYTE 1 8-bit-byte 0..255

WORD 2 B-bit-bytes 0. . 45535
FLOATING REAL 4 B-bit-bytes . 10E-98. . 10E+98
ETRING 1. 2546 bytes

SET 32 B-bit-bytes 0..255

5.1.1 CHAR

The data type CHAR is implemented using one 8-bit byte for each
character. The reserved word PACKED is assumed on arrays of CHAR. CHAR
variables may have the range of CHR(O).. CHR(235). When pushed on the
stack, a CHAR variable is 146 hits, with the high-order byte containing
00. This is to allow OD., ODD. CHR, and WRD to work together,

5.1.2 BOOLEAN

The data type BOOLEAN is implemented using one B-bit byte for esach
BOQLEAN variable. When pushed on the stack, 8 bits of O are pushed to
provide compatibility with built-in operators and routines. The
reserved word PACKED is allowed but does not compress the data
structure any more than one byte per element (this eoccurs with and
without the packed instruction). ORD(TRUE) = 0001 and ORD(FALSE) =
O0GO. The BOOLEAN operators AND, OR and NOT operate only on ONE byte.
Refer to the & and ! operators for 16-bit boolean cperators.

IXIXIXIXtXixXixiort {X means don’'t care)

70

5.1.3 INTEGER

The data type INTEGER is implemented using two 8-bit bytes for each
INTEGER variable. MAXINT = 32747 and INTEGERS can be in the range
~32768. . 32767. An integer subrange declared to be within the 0..25S
range occupies only one byte of memory instead of two bytes. Integer
constants may be hexadecimal numbers by preceeding the hex number with
a dellar sign (e.g. $QF3B}.

5.1.4 REAL

The implementation of the data type REAL in ATAR!I Pascal is the same
as that used by ATARI BASIC. Six bytes of data are required to
implement a floating point number. The first byte contains the
mantissa sign, the exponent in excess—44. The base of the exponent is
100. The remaining five bytes contain the mantissa in binary coded
decimal. The precision is approximately 8 digits.

+ /77 +
! H i i {
low mem Imantissa sign/exponent excess 54! ms! t 1s thigh mem
+ r7/ +
ms = most significant bits
ls = least significant bits
$5.1.9 Byte

The BYTE data type occupies a single byte. It is compatible with both
INTEGER and CHAR types. This compatibility can be very useful when
manipulating control characters, handling character arithmetic, etc.
Characters and integers may be assigned to a BYTE.

5.1.6 MWord

WORD is an unsigned, native machine word. All arithmetic and
comparisons performed on expressions of type WORD are unsigned.

5.1.7 8tring

S5.1.7.1 Definition

The pre-declared type STRING is like a packed array of characters in
which the byte O contains the dynamic length of the string., and bytes
1 through n contain the characters. Strings may be up to 25%

characters in length. The default length is 80 characters that may be

altered when a variable of type STRING is declared (see example
below).

71

The Qtring "This is a Wottle" is 146 characters long. The following

diagram shows how these characters are stored in a string declared to

be 20 characters long.

low mem {1&6!Tihiiisi {ifs! la! !Wioltit!iliel?t?i?I?! high mem

I# the number of characters in the string is less than the declared
length, the bytes on the end are not defined. Note that the length
is stored in the first byte and the total number of bytes required

for the string is 17.

Example:

VAR :
LONG_STR: STRING; (This may contain up to 80 characters)
SHORT _STR: STRINGL101; (This may contain up to 10 characters)

VERY_LONG_STR: ETRINGL255]; (This may contain up to 255 characters.

the maximum allowed.)

5.1.7.2 Assignment

Assignment te a string variable may be made via the assignment
statement, reading into a string variable using READ or READLN,

pre~defined string functions and procedures.
Example:

PROCEDURE ASSIGN;
VAR :
LONG_STR : STRING:
SHORT_STR : STRING [121:
BEGIN

or the

LONG_STR := ‘This string may contain as many as eighty characters’;

WRITELN(LONG_STR}:

WRITE('type in a string 10 characters or less : ‘};
READLN(SHORT_STR};
WRITELN{SHORT_STR);

SHORT_STR := COPY(LONG_STR, 1, 11);
WRITELN('COPY (LONG_STR..)=', SHORT_STR);
END;)

Dutput:

This string may contain as many as eighty characters

type in a string 10 characters or less : {1i2345&> (USER
123434 :
COPY(LONG_STR. .)=This string m

INPUT)

72

S’

R

The individual characters in a string variable are accessed as if the
string were an array of characters. Thus, normal array subcripting via
constants, variables. and expressions allows assignment and access to
individual bytes within the string. Access to the string over its
entire declared length is legal and does not cause a run~time error
even if an access is made to a portion of the string beyond the
current dynamic length. If the string is actually 20 characters long
and the declared length is 30 then STRING [25] ig accessible.

Example:

PROCEDURE ACCESS:
VAR
I : INTEGER;
BEGIN
I =15 ,
LONG_STR := ’12345&78%abcdef’;
WRITELN(LONG_STR);
WRITELN(LONG_STRL&3, LONG STRL i-5 1)
LONG_STRL16]1 := ‘%7,
WRITELN(LONG_STRIL161);
WRITELN(LONG_STR); (* will still only write 1S-characters *)
END:

Output:
12345678%abcdet

ba
%*

12345478%abcdef

73

5.1.7.3 Comparisons v ‘ o

Comparisons are valid between two variables of type STRING (regardless
of their length) or between a variable and a literal string. Literal
strings are sequences of characters between single quotation marks.
Comparisons may also be made between a string and a2 character. The
campiler “forces” the character to become a string by using the CONCAT
buffer; therefore, comparison of the result of the CONCAT function and
a character is not meaningful because this comparison would always be
egual.

Example:

PROCEDURE COMFARE;

VAR
S1,82 : STRINGE10);
CH1 : CHAR;

BEGIN
81 := ‘012345478 ";
g2 = '2I23456781;

IF 81 £ S2 THEN
WRITELN(S1., * is less &than ‘,82);

81 .= ‘alpha beta’: —
IF S1 = ‘alpha beta ' THEN
WRITELN(‘trailing blanks don’’t matter’)
ELSE
WRITELN(’trailing blanks count’);
IF 81 = ¢ .alpha beta’ THEN
WRITELN(‘blanke in front don’‘t matter’)
ELSE
WRITELN(‘blanks in front do matter’};
IF S1 = ‘alpha beta’ THEN
WRITELN(SL, + = 7/,81});
81 := Z7%;
CH1 := *Z°;
IF 81 = CH1 THEN

WRITELN(’strings and chars may be compared’);
EMND;

Dufput:

012345678 is less than 222345678
trailing blanks don‘t matter
blanks in fromt do matter

alpha beta = alpha beta

strings and chars may be compared

74

5.1.7.4 Reading and Writing Strings

Strings may be written to a text file using the WRITE or WRITELN
procedure. WRITELN will cause a carriage return and line feed
following the sfring. Reading a2 string is always done via the READLN
statement because strings are terminated with a carriage return and
line feed. Using READ will not work, because the end-of-line
characters are incorrectly processed. Tabs are expanded when they are
Tead into a variable of the STRING type.

5. 1.8 Set

The SET data type is always stored as a 32 byte item. Each element of
the set is stored as one bit. The low order bit of each byte is the
first bit in that byte of the set. Shown below is the set "A" L uZ®
(bits &5..122) .

Byte number 00 O1 02 03 04 05 04 07 08B 09 OA OB OC ... 1F

Contents 00 0C 00 OO0 00 00 00 00 FE FF FF 07 00 ...00

73

CHAPTER &: COMPATIBILITY

Pascal is considerably more standardized than BASIC. Nearly every
version of Pascal is based on a definition of the language contained
in “Pascal User Manual and Report", by Kathleen Jensen and Niklaus
Wirth: Springer-Verlag, 1974. The Pascal Langvage System is a
superset of the Pascal described in this book. In addition, ATARI
Pascal meets a more recent standard, namely the ISO standard
(International Standards Organization. similar to ANSI). It is
expected that any Pascals developed from now on will certainly be
compared to this standard, and will strive to meet it. ATARI has
learned the importance of compatibility from its experience with ATARI
BASIC. A Pascal that meets the newly developed ISO standard is a very
positive step toward compatibility.

A possible compatibility problem is that the ATARI Pascal Language
System is not entirely compatible with UCSD Pascal. UCSD Pascal has
attained considerable popularity on small computers., While it is true
that ATARI Pascal is not completely compatible with UCSD Pascal. it
should be remembered that both versions are written around a caommon
core—— Pascal as defined by Jensen and Wirth. The differences, though
present, are not as significant as, for example, the differences in
various BASICs. In addition, the superiority of the Pascal Language
System Justifies the incompatibilities involved,

A brief comparison of the features that differ bHetween the two Pascals

follows. Parts of this comparison is necessarily somewhat technical,
as most of the differences are deep in the details of the language.

74

N

6.1 Incompatabilities With UCSD Pascal

1. The predefined type INTERACTIVE is available only in UCSD Pascal.
On the ATARI Computer, any file associated with the computer conscle
is automatically interactive, and therefore this type is not needed

and would only clutter the language unnecessarily.

2. The predefinéd procedure SEEK is available only in UCSD Pascal.

3. UCSD Pascal uses UNITS to implement modular compilation. They are
easy to understand, but are much more restrictive than ATARI Pascal’s
implementation of modular compilation.

4, UCSD Pascal provides SECGMENT procedures to allow overlays from

diskette. ATARI Pascal will! use the standard DOS methods for invoking
averlays.

3. Sets can be considerably larger in UCSD Pascal. They are
considerably faster in ATARI Pascal. The ATARI Pascal implementation
is more in keeping with the spirit of the Jensen and Wirth standard.

4. UCSD Pascal includes bit~level packing on PACKED structures.
Bit—-level packing costs in both the size of the interpreter., and the
speed of execution of the program (particularly on a machine based an
the 6502 microprocessor which does not contain multiply and divide).

7. UCSD Pascal has a construct EXIT <procedure name> that is not
included in ATARI Pascal, although ATARI Pascal permits EXIT without
the procedure nams. Many Pascal purists feel that the construct as
implemented by UCSD is noet a structured construct, and is therefore
counter to the philosophy of the language.

8. UCSD Pascal includes the type LONG INTEGER that is not available
in ATARI Pascal.

?. Several features in UCSD Pascal are operating sqstem'dependent,
"e.g.., long file names, and unit I/0 (similar to XIO}. These have not

been implemented in ATARI Pascal.

77

& 2 Additional Features Available with the ATARI Pascal Language
System

1. The ATARI Pascal Language System is a complete ISO standard
Pascal. Some of the ISO features not included in UCSD Pascal are
conformant array handling, procedures and functions as parameters,
local files, PACK and UNPACK procedures: READ and WRITE for non-text
files, WRITE and WRITELN of Boolean expressicns, and GOTO out of a
procedure intoc a surrounding procedure.

2. The Pseudo code implemented in ATARI Pascsl was optimized for the
4502 microprocessor.

3. ATAR] Pascal uses the same operating system as all other ATARI
programs. ATARI Pascal and ATARI BASIC files are the same format, and
data files can be read by either language. You do not have the
inconvenience of learning two different and incompatible operating
systems, as you do with UCSD Pascal. In addition, ATARI Pascal allows
access to I/0 in a manner very similar to ATARI BASIC. XIO, graphics,
sound, game controllers, and named devices are all implemented.

4. UCSD segment procedures are limited to six per program which limits

the development of large applications. ATARI Pascal should allow the
development of more complex applications.

5. ATARI Pascal has nine or ten digits of precisian on real numbers.
UCED Pascal has only 6.5 digits of precision.

&. ATARI Pascal ‘permits the grogrammer %o trap errors, and prevent
programs from aborting. .

7. ATARI Pascal provides protection when reading in a string. If the
string is too long for the receiving variable, ATARI Pascal will
truncate the string. UCSD Pascal will sverwrite the bytes following
the string in memory, resulting in undefined program errors.

8. ATARI Pascal has extended the CASE statement by adding an ELSE
clavse. If the case selecting expression would not result in the
execution of a statement with the CASE., the ELSE clauvse is executed.
ELSE simplifies ervor checking. Execution of a similar unmatched
CASE in UCSD Pascal causes an undefined result.

?. Modular compilation is much mere flexible in ATARI Pascal. Local
static variables, external procedures and functions located in the

main program, and external global variable usage are all missing from
UCSD Pascal.

10. ATARI Pascal has a built in BYTE data type. This data type
eliminates the use of confusing CASE wvariant records when manipulating
ctharacters as integers.

11. ATARI Pascal has a built—in WORD data type. An unsigned 1l&-bit
data type is very useful for address arithmetic and machine-level
programming.

78

12. UCSD Pascal does not fully implement compatibility between strings
and characters. Strings and characters are teotally compatible in
ATARI Pascal.

13. For system dependent applications, ATARI Pascal allows relaxation
of type checking rules. This relaxation allows machine I/0 and memory

manipulation to be done without cluttering the program with confusing
CASE variant records.

14. ATARI Pascal has the buvilt—-in bit-menipulation routines TSTBIT.
SETBIT, CLRBIT, SHL, and SHR. Bit manipulation in UCSD Pascal must be

done with CASE variant records, which are confusing and machine
dependent.

15. In both ATARI Pascal and UCSD Pascal, the GET/PUT file I/0 is
gquite slow. ATARI Pascal also contains GNB and WNB, which are high-
speed I/0 routines for byte 1/0.

16. ATARI Pascal fully implements the NEW and DISPOSE procedures,
including fragmentation management and re~use of disposed areas. UCSD
Pascal implements a much more restricted version of these procedures.
This feature is vital to any program doing dynamic data management.

17. ATARI Pascal allows full use of files. UCSD Pascal does not allow
local files, files in records: or arrays of files.

18. ATARI Pascal includes the ADDR function. This returns the address
of a variable, procedure: or function. This function is useful when
deing machine dependent programming.

19. ATARJ Pascal has a built—in INLINE feature that can be used to
generates compile~time constant data. This feature eliminates run—-time

initialization of constant tables, increasing execution speed and
decreasing code size.

20. ATARI Pascal allows output in any number base from twa through
sixteen,)

2i. ATARI Pascal allows input of either decimal or hex numbers.
22. ATARI Pascal has not extended the parameter list on any ISO

standard routine (specifically RESET and REWRITE). For acessing
external files, a new procedure (ASSIGN} has been added.

79

CHAPTER 7: LANGUAGE DEFINITION
7.1 Introduction

Chapter 7 defines the language features of ATARI Pascal that are
common to each implementation of the compiler. It is assumed here that
you are familiar with Jensen and Witth’s "Report® sand/or the ISO draft
standard (DPS/7185). The ATARI Pascal features that differ from those
in the IS0 standard and in Jensen and Wirth’s “Report", are described
by section. In each section, BNF (Backus Normal Form) syntax is
provided for reference. The complete BNF description of the language

is present in an appendix. Each section corresponds to Wirth‘s
"Reaport". :

80

7.2 Summary of the ATARI Pascal Language

Features of the ISD Pascal include the data types REAL, INTEGER, CHAR,
BOOLEAN, multidimensional ARRAYS, user—defined RECORDS, POINTERS
types, file variables, user—defined TYPES and CONSTANTS, and SETS
{implemented in this version with a base type of 256 one byte
elements). ENUMERATED types: and SUBRANGE types.

Also included in IS0 Pascal are PROCEDURES, FUNCTIONS: and PROGRAMS.
Passing procedures and functions as parameters to a Pastcal routine are
part of the ISD standard: as well as conformant arrays. Arrays of the
same index $type and element type but different sizes may be passed to .
the sdme procedure. External parameters with the PROGRAM statement
are supparted at the syntax level.

TYPED and TEXT files are supported as defined in the standard using
the Pascal routines RESET, REWRITE, GET. PUT. READ. WRITE. READLN. and
WRITELN. The defauvlt I/0 files INPUT and OQUTPUT are defined.)

All ISO statements are supported including WITH, REPEAT...UNTIL, CASE,
WHILE loops, FOR loops, IF..THEN..ELSE, and SOTO.

PACK and UNPACK are supported, but do not aFFecf the gutcome of the
program (data structures are always packed at the byte level), NEW
and DISPOSE are implemented; they allocate and deallocate HEAP space.

Modular compilation is an extension of the ATARI compiler. Variahles
and routines may be made public and/or private and may be called from
any other module cor from the main program.

The extended data types STRING, BYTE, and WORD are implemented in the
ATARI Pascal compiler. The STRING type includes a length byte followed
by the maximum number of bytes possible. Routines are supplied to
INSERT @ character or a string, DELETE from a string., find the
POSition of a character in a s¢ring, COPY a portion of one string to
another, and CONCATenate two or more strings and/or characters
together. BYTE is a one-byte data item for representing numbers from O
to 255. WORD is two bytes for the 8-bit CPU,

Additional procedures to manage files on diskette are implemented. A

file on diskette is associated with an internal file and may be closed
or deleted.

Manipulating BITS and BYTES is done using routines ¢o TEST, SET,
CLEAR, SHIFT RIGHT, and LEFT. return HI or LOW of a variable: and SWAF
the high and low bytes of a varijable. ’

Miscellaneous routines to access items in & program are to return the
address of a variable or routine, return the size of a variable or
type,; move a given number of bytes from one memory location to
another and fill a data item with a certain character. Alsa, the
amount of HEAP space available at any given ¢time is accessible.
Garbage collection on the HEAP is supported.

g1

Logical operators for non-Booleans are implemented.
HEX literal numbers may be used with a dollar sign (%).
Include files are supported.
An ELSE clause on the CASE statement is provided.
Program CHAINING is supported. Chaining is such that the code for one

program is totally replaced by code for the next program. but heap
space may be maintained across a CHAIN.

82

7.3 Notation: Terminology, and Vocabulary

Clegter> ::=A I BI CIDIE'FP I G IH' I I J

Kt LIM NiOI'/PIG@IRISESE I T

Uil it XityYyil Zvalbtcecti di

e { £ g th it gl kK1l tmtn i

o i pitgivisitiuoviviw! x!

y t z { @
“digit> =0 1 1 1 2 1 3141 51 &7 81 91

- AR IC I DIE L F ! (only allowed in HEX numbers)

<special symboll ::= (reserved words are listed in the appendix)

+ - 1l /b= (e L

<= §{ >= | (1)V E b| ~ 1

H | ! I

/3 |

1
1
« f 3
’ L 1

(the following are additional or substitutions:)
(. by vi 21 b sl x

(. is a synonym for [
.) is a synonym for I
7 and \, are synonyms
'+ and { are synonyms
&

Extensions:

The symbol "€" jis a legal letter in addition to those listed in the
“Report". This symbol has been added because the run—-time library
rovtines are written using this special character as the first letter
of their name. By adding “@“ conflict with user names is avoided but
users are allowed to call these routines. See section 7.4 for further
information.

A comment beginning with "(#" must end with "a)",

Lcomment> ::= (# < any characters > #)

83

7. 4 Identifiers, Numbers, and Strings,

<identifierd>
Lietter or digit>

“letterd> {{letter or digit or underscorel}
<letfer> | <Jdigit> !

<digit sequence> :
<unsigned integer> ::

Cdigi¢d> {<digit>}
¢ fdigit sequencel |
<digit sequence>

{unsigned realZ> <unsigned integer> . <digit sequence> |
funsigned integer> . <{digit sequencel
E <scale factar> '

Lunsigned integer> E {scale factor>
“<unsigned integer ! <{unsigned reall

<unsigned integer> ! <{sign><{unsigned integer>
+ ! -

{unsigned number?
<scale factor>
Lsign>

0w

Letring> ‘Ccharacter> {{character>}’ | ¢

All identifiers are significant to eight characters. External
identifiers are significant to either six or seven characters
depending upon usage. The underscore character (_) is legal between
letters and digits in an identifier and is ignored by the compiler
(i.e., A_B is equivalent to AB). ldentifiers may begin with an "@".
To allow declaration of external run—-time routines within a

Pascal program. Users are, in general, advised to avoid the "@"
character to eliminate the chance of conflict with run—time routine
names. :

Numbers may be hex as well as decimal. Placing a "$" in front of an
integer number causes it to be interpreted as a hex number by the
compiler. The symbol <digit> now includes: "A®", “B", #C", «pv, #gw
and "F". These may be upper or lower case.

B84

7.9 Constant Definitians

{constant identifier> ::= {identifiery

{constant : “unsigned number>
<sign>Cunsigned number
<constant identifierl
<signi<constant identifier>
“string>

Cidentifier) = <constant>

<.constant definationy

1

In addition to all constant declarations available in standard Pascal,
ATARI Pascal supports declaration of a nulil string constant:

Example:

nullstr = *4;

=1

7.6)Data Type Definitions

<type> 1= Lsimple fypel H
“structured type> |
: <pointer typel>
<Ltype definitiond: = {identifier> = <type>
7.4.1 Simple Types

<simple typel ii= {scalar {ype> :
<subrange type> !
<type identifier>
Ltype identifierl ::= <identifier>

7.6.1.1 Scalar Types

{scalar type> ;.= (Lidentifier <, Lidentifier2})

7.6.1.2 Standard Types

The following types are standerd in ATARI Pascal.

INTEGER
REAL
BOOLEAN
CHAR

BYTE

WORD
STRING

Three additional standard types exist in ATARI Pascal. Refer to the
Appendizx for information on representation and usage of all standard
and structured ¢ypes. - :
STRING : Packed array [O..n] of char

byte O is dynamic length byte

bytes 1..n are characters

BYTE : Subrange O0..255 with special attribute that it is compatible
also with CHAR ¢type

WORD ! Unsigned native machine word

7.64.1.3 Subrange Types
<subrange typel ::= <{constant> .. <constant>

7.6.2 Structured Types

8&

Lstructured typel:

it

<unpacked structured typel

PACKED <unpacked structured type>
{unpacked structured typed ::= {array typer
‘<record type>
{ezet type>
{file type>

- e e

The reserved word PACKED is detected and handled by the ATARI Pascal
compiler as follows: '

All structures are packed at the BYTE level even if the PACKED
reserved word is not found.

7.6.2.1 Array Types

Carray typeZ ::= <normal array> |
<string array-

<string array> = BTRING <max length>

“max length> i:=m [<inteconst> 1 !
<emptyl:

<inconst> i:= Yunsigned integer> |
<int const id>

<int const id> =2 Lidentifier>

<nermal array>

ARRAY [<index typer £, <index type’)] OF
<component type> ‘

‘Cindex type> i:= Csimple typel

{component type> ::= <typel

Variabtles of type STRING have a default length of 81 bytes (8O data
characters). A different length can be specified in square brackets
following the word STRING. The length must be a constant (either
literal or declared, e.g., STRINGLS] ar STRINGLxyzl (where xyz is a
constant (xyz=10) }. It represents the length of the DATA portion
(i.e, one more byte is actually allocated for the length).

-

87

7.4 2.2 . Record Types

“<record typel
<field list>

RECORD <field list> END

<fixed part> '

“fixed part> ; <variant part> !
Lvariant part>

<record section {; <{record section>}
“field identifier> {,<{field identifier>}
<type> | Lemptyd

CASE <tag field> <type identifier> OF
“<variant> {i<{variant>}

Cfixed part>
<record section’

<variant part>

Lvariant> = <case label listl} : ({field list) '
“emp ty>

<case label list> = {case label> {,<case labell)}

<case label> = Leconstant>

Ltas field> = <identifier> : !
Cemptyl

7.6.2.3 Set Types

<set type> i:= SET OF <base type>

<base typel = {simple typel

The maximum range of a base type is O..255. For example, a set of
£Q.. 10000] is not legal. The set of CHAR or set of O..255 is legal
but set af 0..256 is not.

g8

N

7.6.2. 4 File Types
ifile type> ::= file {of <type>?

Untyped files are allowed. They are used for CHAINING and are also
used with BLOCKREAD and BLOCKWRITE procedures. Be extremely careful
when using untyped files.

When you wish to read a file of ASCII characters and use implied
conversions for integers and real numbers use the pre~defined type
TEXT. TEXT is NOT the same as FILE OF CHAR. It has conversion implied
in READ and WRITE procedure calls and also may be used with READLN and
WRITELN. A file of type TEXT is declared in the following manner: "VAR
F : TEXT". The INCORRECT syntax for declaring a TEXT file is "VAR F :
FILE OF TEXT". See the appendix on Pascal file handling.

7.6.3 Pointer Types

“pointer type> ::= “{type identifier>

Pointer types are identica1 tn tﬁe standard except that weak tgpé
checking exists when the RELAXED type checking feature of the compiler

is enabled (the default). In this case: pointers and WORDS used as
pointers are compatible in all cases.

89

7.4. 4 Types and Assignment Compatibility

The mast common standard Pascal question concerns type conflict
erTToTs messages from the compiler. Types must be identical if the
variable is passed to a VAR parameter. Types must be compatible for
expressions and assignment statements. To understand the difference
between compatible and identical types, think of types as pointers to
compile~time records. If you declare a type (such as T=ARRAY Ci.. 10}
OF INTEGER}: then anything declared as type T really points to the
record describing Sype T. If:, on the other hand. you declare two
variables as follows:

VAR ’
- Al : ARRAY [1..101 OF INTEGER;:
A2 : ARRAY [1..10] OF INTEGER:

they are not identical. The compiler created a new record for each
type and therefore Al and A2 do not point to the same record in mMemoTy
at compile—time. The general rule is that if yoyu cannot find your way
back to a type definition, then the types are not identical.

CHR, ORD, and WRD are type converson operators that generate ne code
but tell the compiler that the following 8~bit data item is to

be considered type CHAR, INTEGER, or WORD respectively.

These aperators may be vsed in sxpressions and with parameters except
VAR parameters.

Below is & section from the ISD draft standard (DPS-7185) which is
available from the American National Standards Institute. The IS0
standard definition of compatible types is as follows:

Types T1 and T2 shall be designated compatible if any of the four

statements that follow 'is true.

(a) Tl and T2 are the sames type.

(b) Tl is a subrange of T2 or T2 is a subrange of T1. or both T1 and
T2 are subranges of the same host type. -

(c) Tl and T2 are designated packed or neither T! nor T2 is
designated packed.

(d) Tl and T2 are string-types* with the same number of components.

...Assignment compatibility. A value of type T2 shall be designated
assignment—compatible with @ type Tl if any of the five statements
that follow is true,

(a) T1 and T2 are the same type, that is neither 2 file—type nor
a structured—~type with file component (this Tule is to be
interpreted recursively}

(b} Tt is the real—~type and T2 is the integer-type.

(c) Tl and T2 are compatible ordinal-types## and the value of type
T2 is in the closed interval specified by the type TI.

(d) Tl and T2 are compatible set—types and all the members of the
value of type T2 are in the closed interval specified by the
base—type of Ti.

(e) Tl and T2 are compatible string—typess.

20

S

At any place where the rule of assignment—-compatibility is used:

{a) It shall be an error if Tl and T2 are compatible ordinal—types#s
and the value of type T2 is not in the closed interval specified

by the type T1.
{(b) It shall be an error if T1 and T2 are compatible set-types and

any member of the value of type T2 is not in the closed interval

specified by the base-type of the type TIi.

String—types in IS0 Pascals are arrays of characters.
Ordinal types are named subranges of numbers or enumerations.

7.7 PDeclaration and Penotations of Variables
“variabhle> ti= Lvar> !
~external var> {

‘absolute varl

<gxternal var:

CEXTERNAL <var>

<absolute var>

ABSOLUTE [<constant> 1 <var>

Lvare>

<entire variable> t
<component variable> |
<referenced variable>

ABSOLUTE wvariables may be declared if qnu'know the address at compile

time. You declare variable(s) to be absolute using special syntax in
VAR declaration, ARSOLUTE variables are not allocated any space in

gyour data segment by the compiler and you are responsible for making
sure that no compiler—allocated variables contflict with the absolute

variables. NOTE: STRING VARIABLES MAY NOT EXIST AT LOCATIONS <= $100..

This is done so that the run—time routines can detect the difference
between & string address and a character on the top of the stack.
Characters have the high byte of O when present on the stack. After
the colon (:) and before the type of variable(s}): you place the

keyword ABSOLUTE followed by the address of the variable in brackets
(C.. 1)

Examples:

I: ABSOLUTE [$800] INTEGER;
SCREEN: ABSOLUTE [$C000J ARRAYLO..15] OF ARRAYLO..&31 OF CHAR:

?1

7.7.1 Entire Yariables _ e

<entire variablel i:= Lvariable identifier>
{variable identifier> = {identifier>

7.7.2 Component Variables

<component variable» ::= <indexed variable> |
<field designatorl |
<file buffer>

7.7. 2.1 Indexed Variables

{indexed variéb1a> t:1= <array variable> [<expression’ {,<expression>}]
“£array variablel = {variablel

STRING variables are to be treated as a PACKED array of CHAR for
subscripting purposes. The valid range is 0. .maxlength, where
maxiength is 80 for & defavlt length.

7.7.2. 2. Field Designators

<field designator> ::= <{record variable>» . <field identifier>
<record variable> ::= <variable>
{field identiFigr} 1= Lidentifier>

7.7.2.3 File Buffers

<file buffer> r= £file variabler™
file variable> ::= <variable>
7.7.3 Referenced Varjables

<referenced variable> ::= {pointer variahlie>"
Cpointer variable> = <variable2

2

7.8 Expressions

‘unsigned constant> ;.= <unsigned number>

<string>

NIL

<constant identifierl

<variable>>

<unsigned constant>

“<function designator’>

{ <expression)

“logical NOT operator’> <{factord

<setlr

£ <element listl 1

“element> {,<element>}

<empty> .

<expression>>

“<expression> .. <expression>

Lterm> : Lfactorr <multiplying operator> <factor>

{simple expressionr ::= <{term>

simple expression> <adding operator> <term>

<adding gperatar> <term>

<simple expression’

“<simple expression> <relational operator>
<simple expression’

<factor>

<set>
“element list>

<element’

{fexpressionl

An additional category. of operators on lé-bit variables are &, !
(also), (also \ and ?) denoting AND: OR and ONE’s complement NOT,
Tespectively. These have the same precedence as their egquivalent
boolean operators and accept any type of operand with a size <= 2
bytes.

—

7.8.1 Dperatars

7.8.1.1 The Operator NOT
<logical NBT aperator> ::=NOT HEA N

\ and 7 are NOT operators for non—Beolean operators.

7.8. 1.2 Multiplying Operators
<myltiplying operator> ::= % { / |. DIV { MOD { AND | &

% is an AND operator on non~Boolean aperators.

7.8.1.3 Adding Operators
<adding operator> ::= + | ~ } OR ! § | ¢

! (synonym {) is an OR operator on non—-Boolean aperators.

7.8.1. 4 Relational Operators

<relational operators> ::= = | <> } € § <= ! =1 IN
7.8.2 Function Designasors

“function identifierd i
<function identifier> (<parm> {,<parm>}
“function identifier> ::= {identifier>

LPunction designator>

94

7.9 Statements

<statement> ::= «<label> : <unliabelied statement> |
<unlabelled statement>

Lunlabellied statement> = Cgimple statements d
<structyred s{atement>

Llabell ::= <unsigned integer>

7.9. 1 Simple Statements

Lsimple statement> ::= Lassigned statementl
<procedure statement>
“goto statementl
<empty statement>
Lempty statement: o= Lempty>

7.9.1.1 Assignment Statements

“agsignment statement> ::= <variablel> := <expression>
<fynction identifier> := <Lexpression>

To the list of exceptions to assignment compatibility add:

1. Integer expressions may be assigned to Qariables of type pointer.
For example:

TYPE X = RECORD
(# field declarations %)

END;
VAR P : “Xi
I : INTEGER:

................

2. Expressions of type CHAR may be assigned to variabl=s of type
STRING.

"3. Variables of type CHAR and literal characters may be assigned to

variables of type BYTE.

4. Expressions evaluting toe the type WORD may be assigned ¢o pointer

variables.

5. Expressions evaluating to the type INTEGER may be assigned to
variables of type WORD.

25

7.2.1.2 Procedure Statements

‘procedure statementl ::= {procedure identifierd<{{parm> {,<parm>}) !
p]

<procedure identifier>

<procedure identifierl::= <identifier

<parm>

The maximum number of parameters for a procedure or

(507,

“procedure identifier> |
<function identifier i
<expression’ :
<variagble>

7.9.1.3 60TO Statements

“goto statement]» ::= goto {label>

7.9.2 Structured Statements

<structured statement> ::= <{repetitive statement>

<eanditional statement>
<compound statement>
<with statement’

— - -

7.9.2.1 Compound Statements

<compound statementl ::= BEGIN <statement> {,<statementl>} END

7.92.2.2 Conditional Statements

<conditional statement> ::= <case statement> |

<if statement>

7.2.2.2.1 1I# Statements

<if statement> ::= IF <eipression> THEN <statement)> ELSE <{statement>

IF <expression> THEN <statement>

7.2.2.2.2 Case Statements

tcase statement: .= CASE <expression> OF

<case list>

Llabel list>
“<case labell>

ATARI Pascal
addition, if

<case list> 4, <case lise}
{ELSE <{statement>}
END

Lilabel list> : <statement> !
<emptyo

<case labell {,<case labelr}
<non—real short scalar constant>

-

implements an ELSE clause on the CASE statement. In
the selecting expression does not match any of the case

function is fifty

F&

S

seiectors, the program flow will "drop through" the CASE statement.
The standard says this condition is an error.

Example:

CASE CH OF
AT WRITELNC’AY);
‘@ : WRITELNC‘Q‘);
ELSE

WRITELNC(/NOT A OR Q')
END
7.9.2.3 Repetitive Statements

{repetitive statement> ::= {repeat statement> |
{while statement’ !
<for statement>

7.9.2.3.1 While Statements

{while statement> ::= WHILE <expression® DO <statementl

7.9.2.3.2 Repeat Statements

<repeat statement> ::= REPEAT <statement> {, Cstatement>} UNTIL
“expression>

7.92.2.3.3 For Statements

<for statementl> :: FOR <ctrlvard> := <for list> DO <statementd

<for listr Cexpressionr DOWNTO <expression> |
<expressiony TG <{expression>
<ctrlvar> = L{variable>

7.92.2. 4 With Statements

Cwith statement>

: WITH <record variable list> DO <statement>
<record variable list> ::

<record variable>» {,<record variable>}

Note that the IS0 standard differs from Pascal defined by Jensen and
Wirth in that only LOCAL variables are allowed as FOR loop control
variables. This prevents such programming errors as the inadvertent

vse of a GLOBAL variable as a FOR control variable when nested five
levels deep.

You’re limited to 16 FOR and/or WITH statements in a single
procedure/function, This limitation is so that the compiler can
allocate a fixed number of temporary locations (1& words) in the data
segment for the procedure/function,

Q7

7.1¢C
“procedure declaration>

<block>

<procedure heading>

<parmlistl:

“<fparm>

<parm group>

“conformant arrayl

<conarray2>

<indxtyp>

Lordtypid>

“scalar type identifierd

<subrange type identifiery ::

“<label declaration part>

{constant definition partd

“<type definition partl

Procedure Declarations

EXTERNAL <procedure heading> H
<procedure heading> <block>
<.label declaration part>
<constant definition part

<type definition part>

<variable declaration part>
<procfunc declaration part>
tstatement part>

PROCEDURE <identifier> {parmlist>
PROCEDURE <identifier>;

(<fparm> {, <fparm>>)

“procedure headingx ;
<function heading2 H
VAR <parm group> H
<parm groupl

<identifier> {,{identifier>)
<type identifier>

“identifier> {,<identifierl}
<conformant array>

ARRAY [<indxtyp> {;<indxtyp) 1 OF
Lconarraya>

Ctype identifier> |
<conformant array>

Cidentifier), <{identifierd
<scalar type identifisrl d
<subrange type identifier>

Lidentifier
Cidentifier

Lemptyl |
LABEL <label’ {, {label>} ;

“empty> ;
CONST .
Leonstant detinition
{i<constant definition>} ;

Cemptyl !

TYPE
“<type definition>
{i<type definition>} ;

<ordtypid>

78

<variable declaration part>: .= {empty> i
VaR
<variable declaration
{i<variable declaration>} ;

<procfunc part>

{{proc or func> ; }

Lproc or funce ::= Lprocedure declaration> H
“function declaration>

{statément part> »:= <campaund statement

7.10.1 Standard Procedures

The following is g list of ATARI Pascal built—in procedures. See
Chapter 3 for parameters and Usage. Thes? procedures are pre-declared
in a scope surrounding the program. Therefore, any user routines of
the same name will take precedence.

NEW DISPOSE EXIT INSERT
DELETE COrY CONCAT FILLCHAR
MOVELEFT MOVERIGHT CLRBIT HI

La SETBIT SHL. SHR

SWAP TSTBIT LENGTH POS

ADDR MOVE MAXAVAIL MEMAVATIL
SIZEOF

7.10. 1.1 File Handling Procedures

All standard fils handling procedures are included. In addition the
procedure ASSIGN(F, string) is added where “F" is a file and "string"
is a literal or variable string. ASSICN assigns the external file name
contained in the string to file F. It is vsed preceding 3 RESET or
REWRITE. See Section 3.4.15 for more details.

Listed below atre the names of the file handling procedures:

GET PUT RESET - REWRITE
ASSICN CLOSE CLOSEDEL PURGE
OPEN BLOCKREAD BLOCKWRITE READ
CHAIN PAGE IORESULT

GNB WNB . WRITELN

WRITE READLN

160

7.10. 1.2 Dynamic Allocation Procedures
NEW DISPOSE

In addition to NEW and DISPOSE, MEMAVAIL and MAXAVAIL are also
included.

7.16.1.3 Data Transfer Procedures

PACK (A, 1,2} UNPACK (Z.4, I}

7.10.2 FORWARD

Forward procedure declarations are implemented in ATARI Pascal.
recommended that this Peature not be used unless strict Pascal
conformance is required. The three pass compiler, makes forward
declarations unnecessary.

It is

i01

7.10. 3 CONFORMANT ARRAYS

Note that the ISO standard has added the CONFORMANT ARRAY SCHEMA for
passing arrays of similar structure (i.e., same number of dimensions,
compatible index ¢type, and same element typel, but different upper and
lower bounds. You may now pass, for example, an array dimensioned as
1..10 and an array 2..50 to & procedure expecting an array. You
define the array as a VAR parameter and in the process of declaring
the array: you also define variables to hold the upper and lower bound
of the array. These upper and lower bound items are filled in at
RUN~TIME by the generated code. To pass arrays in this manner, the
index tuype must be compatible with the type of the conformant array
bounds.

Below is an example of passing two arrays to a procedure that
displays the contents of the .arrays on the file DUTPUT:

PROGRAM DEMOCON:

TYPE
NATURAL = 0O.. MAXINT: (#FDR USE IN CONFORMANT ARRAY DECLARATION =)

VAR
Al : ARRAY [1..101 OF INTEGER:
A2 : ARRAY [2..201 OF INTEGER:
PROCEDURE DISPLAYIT ¢
VAR AR1 : ARRAY (LOWBOUNDJ. . HIBOUND: NATURALI OF INTEGER
Yi
(# THIS DECLARATION DEFINES THREE VARIABLES:
AR1 : THE PASSED ARRAY
LOWBOUND : THE LOWER BOUND OF AR1 (PASSED AT RUN-TIME)
HIBOUND : THE UPPER BOUND OF AR1 (PASSED AT RUN-TIME)

)

VAR
I : NATURAL;
(# COMPATIBLE WITH THE INDEX TYPE OF THE CONFORMANT ARRAY #)

BEGIN .
FOR I := LOWBOUND TO HIBOUND DQ
WRITELN(‘ INPUT ARRAYL ‘) I, *1=7, ARLLIT)
END;
BEGIN (# MAIN PROGRAM)
DISPLAYIT(A1); (% CALL DISPLAYIT AND PASS Al EXPLICITLY AND
1 AND 10 IMPLICITLY #3

102

DISPLAYIT{AZ2}

END.

(# CALL DISPLAYIT AND PASE a2 EXPLICITLY AND
2 AND 20 IMPLICITLY =)

103

7.11 Function Declarations

Cfuynction decl> EXTERNAL <function heading> !

{function heading> <block>

<function headingX::= FUNCTION <identifier><Cparmlistl: tresult type>; !

FUNCTION <identifier> : <result typel ;

]

Lresult type> <type identifier>

7.11.1 Standard Functions

Listed below are the names of the standard functiaons supported:

ABS SGR SIN - €0Ss
EXP LN SGRT ARCTAN
abD TRUNC ROUND ORD
WRD CHR SUCC PRED
EQLN EOF IORESULT MEMAVAIL ’
MAXAVAIL ADDR SIZEOF POS
LENGTH
7.11. 1.1 Arithmetic Functions

7.11.1. 2 Predicates

7.11.1.3 Transfer Functions

WRD(x} : The value x (a variable or expression) is treated as the WORD
(unsigned integer) value of x. Integer literal constants are not of
type WORD. Therefore, if W is of type word, W:=3 is iliegal, and you
must use W = WRD(3).

7.11.1.4 Further Standard Functions

File handling: (F is a file variable. See files in appendix.’

PUT(F) GET(F) RESET(F) REWRITE(F) PAGE(F) EDOF(F)} EOLN(F}

Dynamic Allocation: (Tn is a variant record selector, P is a pointer)

NEW(P) NEW(P,T1,T2,....,Tn} DISPOSE(P) DISPOSE(P, T1.T2,...,Tn}

Data Transfer Procedures: (See page 106 of Jensen and Wirth for a more
complete description.)

PACK (A, I, Z) UNPACK(Z, A, I)

Arithmetic functions:

i04

ABE(X} OR ABS(I) - special returns the type of its argument
SQR(X) OR SGR(I! =~ if passed integer returns integer. etc.
Transfer functions: (8C is a non-real short scalar}

Implemented at compile—time and generate no code:

GDD(SC) : BOOLEAN ORD(SC} : INTEGER CHR(SC) : CHAR WRD(SC) : WORD
Implemented at run—time and do generate code:

SUCC(<any scalar type except real>) PRED(<any scalar type except
Teall}

105

7.12 INPUT AND QUTPUT
ATARI Pascal supports all standard Pascal I/0 facilities.
7.12. 1 THE PROCEDURE READ

Reading into subranges is implemented but no range checking is
performed, even with range checking turned on.

7.12.2 THE PROCEDURE READLN
Lreadcall> o= Bead or readlns {{ {<filevar> , > {<varlist>¥ >

<read or readln>::= READ ! READLN -

]

<filevarl <variable>

<varlist> o= Lvariable’> {,<{variable>}
7.12.3 THE PROCEDURE WRITE

7.12. 4 THE PROCEDURE WRITELN

‘writecall> ri=fwrite or writeln> {({<{filevar> .} {exprlist})}

“write or writeln> ::= WRITE | WRITELN

o

<exprlistl o= Lwexpry { Cwaxpri)

{wexpr> = <expression> {:<width exp> {:<dec expr>})}
twidth expr> = Caxpression>

<dec exprl 1= Lexpressiond

To write integers with a base other than ten use a negative decimal
place field specifier.

For example:

WRITE(I:15:~1&)
(% this writes I in HEX#)

You may not use functions that perform input or output as a parameter
to & WRITE or WRITELN statement. These include access routines such as
'GNB. The file pointers become modified by the reading routines,
causing the output %n be done to the input file.

7.12. 5 ADDITIONAL PROCEDURES

See Section 7.10.1.1

HORD input and output is not performed with the standard READ and
WRITE procedures. Two new procedures are READHEX and WRITEHEX. These -

106

R—

new procedures allow Hex I/0 on variables of any one-, two-, or
four—byte type such as integer, char, byte subrange. enumerated,

and long integer. See the section in Chapter 3.4 on ATARI Pascal
extensions.

word,

107

7.13 PROGRAMS

<program>

<program heading:
{module heading>

<prog parms>

The above is identical to the standard with the addition of

Refer to Chapter 3.

<program heading> <block> . H

“module heading>
<label declaration part>
“<constant definition partd
<type definition partd
<variable declaration part>
<procfunc declaration part>
MODEND .

PROGRAM “identifier> (<{prog parms> } ;

MODULE <identifier> ;

Cidentifierl: {,<identifier>}

modules,

108

APPENDIX A:
<letter> = A | B
K { L
Uit v
e | ¢
o | p
y |z
. wdigit> ::=0 | i
A | B
<special symbol>
+]
<= |
=

{the following

¢ . 1

LANGUAGE

- e m- - -

.}

Paw E X0

o e

(g0

{Teserved
H
1
L]
[
[]

TIFrxZ0
we<am
renu
cmso0
cmomz

& 1 7 |
F {only

W

B
o

* {7/ |
¢ty 1 L
[] [.

’

Lo
l 1
[]
1

’

-..--....
>
-

AR R R

(. it a synonym for (
.} is a synonym for 1
N\, and ? ate synonyms
are synonyms

1, and
%

<identifier>
Lletter or digitl
£digit sequence’

Lunsigned integerl

{unsigned reall

Cunsigned numberl
Cgcale factor
<signZ

<string>

“constant identifier>

Lconstant>

Cletter> {{letter or

Lletter> | <4digit>

~—

<digit> {<digitdy

$ <{digit sequencel
<digit sequencel

<unsigned integer> .
<unsigned integer> .
E <scale factor>

<unsigned integer> E

Zunsigned integer>

<unsigned integer>

+ 1 -

‘ Ccharacter>

ii= Lidentifier

“unsigned number>

“<signifunsigned numberd

allowed

words are listed in

SYNTAX DESCRIPTION

EI3 N)M
» 3 o~

g9

appendix B}
>

additional or substitutions: }

& |

digit or unscorel}

<digit sequencel
<digit sequence>

<scale factor>
{unsigned real>

<sign><unsigned

{<characterx}’ { ¢

in HEX numbers)

integerX

169

Lconstant definition>

Ctypel

Ltype definitiond

“simple typel

“type identifier>
<scalar type> ::= (

<subrange type>

<structured typel

“unpacked structure

<array type

<string array>

<max lengthX>

<inconst>

<int const id>

“<narmal array>

Lindex typel
“component typel ::
<record type>

“field list>

d

<

<

<constant identifier

{sign>fconstant identifier>

<string

1:= Lidentifier> = <constantd

<simple typel i
<structured typel> |
{pointer typel

“<identifierr = <type>
{scalar fype>

<{subrange typel
<type identifierd

—

Lidentifier>

identifier> {, <identifier>})

constant> .. <Lconstant:

1:= Lunpacked structured typel

PACKED <unpacked structured type>

type> <array type> |
<record typel> |
<set typeZ !

<file typed

<narmal array> |
Cstring array>

STRING <max length>

L <inconst> 3

<empty>

<unsigned integer> |
<int const id>

{identifier> -

ARRAY [<index type> {,<{index
{component type>

<simple type>
Ltype’
RECORD <field list> END

Lfixed part>
<fixed partl ; <«variant part>

type>>] OF

——

110

Lfixed part>

<record section’

<variant part>

Lyariant>

Lcase label listl::

<rase label>

<tag field>

“<set type>
{base typer
<file type>

“<variablex

Lexternal var>
Zabsolute var>»

<var>’

Peclaration

“identifier>

<entire variable>

<variant part>
{record section> {i<record sectioni>’}

<field identifier? {,<field identifier>}:
{emptyl

CASE <tag field> <type identifier> OF
<variant> {;<variant>}

<case label list. (<field list2) |

Cemptyl
<case labell {,<case label>}

Lconstant>

Lidentifier:
<empty>

SET OF <base type>
<simple typel

$#ile {of <type>l
Lvara :
<external var> !
{absolute var>
EXTERNAL Cvar>
ABSOLUTE { <constant> J} <{var>
<entire variable>

<component variablel
<referenced variableX

of wvariable of type STRING;

{;<identifier>)

STRING {[<constant>1X

<variable identifier>

“variable identifier> ::= <identifier>

{component variable>

“lindexed variablel

array variablel

<indexed variablel |
<fiaeld designator> |
<file bufferl

LEype!

::= Zarray variablel E<expression> {,<expressions}l

<variablels

111

<field designatory

“record variabler . <field identifier>

<record variable> ::= <variable>

“field identifier> ::= <{identifier>

<.file buffer>

Lfile variable>

ti= L£file variablelx™

<variahble>

ﬂreferen;ed variable>::= <pointer variablel >~

Cpointer variable>

unsigned constantl

“factor>

<set>

Celement listl

<element>

“term>

Csimple expression>

<expression

<variable>

“unsigned number>
<string>

NIL

<constant identifierl

<variablel

<unsigned constant>
“function designatord
(Cexpression’> }
<logical not cperator> <factor>
<Lset>

P e

L <element list>]

i= Lelement> {:;<Celement>} H
<empty>

{expression’
<expressiond .. <expressiond

“factor> <multiplying operatorl> <factord

<term ' }
i{simple expression> <adding operator’ <term>!
<adding operator> <term>

1= <simple expression>
“simple expressionl L{relational operator>
“simple expression

<loagical not operator> ::= NOT | \ | %

N and

-

? i are NOT operators for non—-Booleans.

<“multiplying operator: ::= % | s { DIV ! MOD | AND ! %

hod

% is an AND operator on non—Booleans.

Ladding operator ::= 4+ | - ! DR | } { !

112

—

L

' (synonym i) is

“<relational operators>

<function designator>

Lfunction identifier)

<statementl>

<unlabellad statement;:

<label?

Lsimple statement

<empty statement:

Lassignment statementl:

<procedure statement>

<procedure identifier>::

<parm>

<goto statement’

“structured ststementl:

<.compound statement>

<conditional statement>

::= {assignment statement>

= {procedure identifier>

:= {repetitive statement>

an OR oeperator on non-Boolegans

= P~ o=t~ -,
==] L= 2 = IN

= Lfunction identifier> b

<function identifier> (<Lparm>» {,{parm>

= Lidentifier>

<label> <unlabelled statement> H
<unlabelled statement>

<simple statementl {
Cetructured statement>

(i= Lunsigned integer:

<procedure statementl
<goto statement>
<empty statementl

.

o= dempty>

:= <Lvariable> = <expression> i

<function identifier> :+= <{expression’

<procedure identifier>
= {identifier>
"“function identifierl

‘{expression>
<variablel

:= goto <labell

<conditional statementl
“<compound statement>
Lwith statement>

- -~

BEGIN <statement> {.<{statement>} END

c:= <case statement> H
<if statement:

<procedure identifier> (<parm> {, <parm>}

)i

“if statement> ::= IF <expression> THEN <statementl> ELSE <statement> |
IF fexpression THEN <statement>

113

#case statementl :;= CASE <expressiony» OF
“<case list> {,<case list>2}
{ELSE <statement>)>

END
“case listl = <label list> : <statement> !
Lempty>
<label list :i1= <case labeld {,<case labell}
- <repetitive statement> .:= <{repeat statement> !
{while statement> t
<for statement
“while statement: ::;= WHILE <expression> DD <statementl

<repeat statement> ::= REPEAT <Cstatement> {,<statement>) UNTIL
{expression>

<for statement> ::= FOR <ctrlvar> := <for list> DO <statement™

<for list> ::= Laxpression> DOWNTO <expression> |
{expression TO <expressionX

<ctrlvar> = <variable>>
Cwith statement ::= WITH <record variable list> DO <gtatement>
<record variable list} ::= <record wvariable> {,<{record variable>?}

procedure declavration’

EXTERNAL <{procedure heading> !
<{procedure heading> <block>

<hlock> = <label declaration part>
{constant definition partd
Ltype definition part>
<variable declaration part>
<procfunc declaration partl
<statement part>
Lprocedure heading> ::= PROCEDURE <identifier> <parmlist> i
PROCEDURE <identifier> ; H
PROCEDURE INTERRUPT [<constant> 1 ;
<{parmlist> : i= (Cfparm> {.<fparmdd)
{fparm> = <procedure heading> !
“~function heading> |
VAR <parm groupl: H
<parm group>
<parm group> ri= Zidentifier: {,Lidentifier>}

“type identifierd

-

114

Lidentifier) {,<identifier>}
Zconformant array>

<conformant array>

ARRAY [<indxtyp> {:<indxtyp} 1 OF

<conarray2>

<conarrayas dra

{type identifier>

“<conformant arrsyl

<indxtyp>

"

<ordbtypid> 1=

<identifier> ..

Cidentifierd

<scalar type identifier !

<subrange type identifier>

<label declaration part>

Lconstant definition part>

“type definition partl

<varisble declaration parti::

“indxtypl

<ordtypid>

<label declaration part>

<constant definition part:

<type definition partd

‘<variable declaration part>::

"

<empty>r |
LABEL <labell €{.<labelX>} ;
Lemptyx |
CONST

Lconstant definition>

{; <constant detinitiont ;

<empty> |

TYPE
{type definition.
{iTtype definitionz>}

Cempby |
VAR

<variahle declaration>
Cidentifier>. . {identifier>

{scalar type identifier> |
<subrange type ‘identifier>

Cempty> |
LABEL <labell {,<label>?> ;

<empty> |
CONST
{constant definition>
{i<constant definition>};
<empty> |
TYPE
£type definitiond
i <type definitioni?
<empty>r |
VAR
{variable declaration>
{i<variable declarationX}

Lordtypid>

Lordtypid>

115

“procfunc partr

<proc or func>

{statement part>

<function decli>

<function headingX: .

<result typed>
<readcall’

“<read or readln
<filevar>
Lvarlist>
Lwritecall’
<write or writeln
Lexprlist>
<wexpr>

<width expr>
<dec expr>

<program

<program headingi
“module heading’

<prog parms>

#

D

ir= {<{proc or funec> ; I

;1= <praocedure declaration> |
<function declaration>

<compound statementl

;= EXTERNAL <function heading> |
<function heading> <block>

FUNCTION <identifier><parmlist>:<result typel;!
FUNCTION <identifier> : <result Eypel

Ltype identifier>

<read or readln> {{ {<filevar> .> {<varlist:y)

READ | READLN

“variablel

<variablelr {,<variabler)

fl

WRITE | WRITELN
<wexpr> {,<wexprl
<expression? {:<width expr> {:<dec expr>2}}
<expression’>
Lexpressionr
<program heading> <block> . H
<module heading>
<label declaration part>
<constant definition part>
“<type definition part>
<variable declaration part>
<procfunc declaration partl
MODEND .
PROGRAM <Cidentifier™ (<prog parm>) i
MODULE <identifier> ;

Cidentifier> {,<identifier>)

ti={write or writeln> {(£<filevar> ,2> {exprlist})>

114

APPENDIX B: RESERVED WORDS

The following are the reserved words in ATARI
AND DOWNTO GOTO NOT

ARRAY ELSE ‘ IF OF

BEGIN END IN or

CONST FILE L ABEL PACKED

CASE FOR MOD PROCEDURE

DO FUNCTION NIL PRIGRAM

Pascal

RECORD
REPEAT
SET
THEN
TG
TYPE

ATAR! Pascal also has extended reserved words:

ABSOLUTE EXTERNAL PREDEFINED

UNTIL
VAR
WHILE

" WITH

11?7

APPENDIX C: ERROR MESSAGES

Recursion stack overflow: evalution stack collision with symbol table;
correct by reducing symbol table size, simplifying expressions.

1.

10:

11:

12:

i3:

i14:

15:

1s:

Error is simple type
Self-explanatory.

Identifier expected
Eelf~explanatary.

‘PROGRAM’ expected
Self~explanatory.

‘)’ expected
Self-explanatory.

‘. ' expected
Possibly an = used in a VAR declaration.

Illegal symbol (possibly missing ‘;’ on line above)
Symbol encountered is not allowed in the syntax at this point.

Error in parameter list
Syntactic error in parameter list declaration.

‘OF * expected
Self-explanatory.

‘(' expected
Self~explanatory.

Ervor in type
Syntactic error in TYPE declaration.

‘{’ expectaed
Self-explanatory.

‘Y’ expected
Self-explanatery.

‘END’ expected

All procedures, functions, and blocks of statements must have an
‘END ‘. Check for mismatched BEGIN/ENDs.)

t. &

i’ expected (possibly on line abaove)
Gtatement separator required here.

Integer expected
Self—explanatory.

‘=’ pxpected
Passibly a : vsed in a TYPE or CONST declaration.

1i8

17:

18:

19:
20:
21:
50:
Si:
82:
53:
S4:
S95:
56:
57:
58:
5%:
9.
101:

102:

‘BEQGIN' expected
Self—-explanatory.

Error in declaration part

Typically an illegal backward reference to a type in a pointer

declaration.

Error in <field-list>
Syntactic error in a record declaration

L Expected
Self-explanatory.

‘#/ expected
Self—explanatory.

Error in constant
Syntactic error in a literal constant

f:=! expectead
Self-explanatory.

THEN’ expected
Self-explanatory.

‘UNTIL’ expected
Can result from mismatched begin/end sequences.

‘DO’ expected
Syntactic error.

‘TO’ or ‘DOWNTD’ expected in FOR statement
Self-explanatory.

‘IF’ expected
Self—-explanatory.

‘FILE’ expected
Probably an error in a TYPE declaration.

Errer in <factor> (bad expression)
Syntactic error in expression at factor level.

Error in variable
Syntactic error in expression at variable level.

MODEND expected
Each MODULE must end with MODEND.

Identifier declared twice
Name already in visible symbol table.

Low bound exceeds high bound

For subrange the lower bound must be <= high bound.

119

103:

104:

105:

1064:

107:

108:

109:

110:

i11:

112

113:

114:

113:

i116:

117:

1i18:

Identifier is not of the appropriate class
A variable name used as a type, or a type used
as a variabls:, efc. can cause this error.

Undeclared identifier
The specified identifier is naot in the visible symbel %table.

€ign not allowed
Signs are not allowed on mnon—integer/non-~real constants.

Number expected

This error can often come from making the compiler totally
confused in an expression as it checks for numbers after all
other possibilities have been exhausted.

Incompatible subrange types
{e.g. "A’..'Z2Z7 is not compatible with O..9).

File not allowed here
File comparison and assignment is not allowed.

Type must not be real
Self-explanatory.

<tagfield> type must be scalar or subrange
Self~exzplanatory.

Incompatible with <{tagfield> part

Selector in a CASE-variant record is not compatible with the

<tagfield> type.

Index type must not be real
An array may not be declared with real dimensions

Index type must be a scalaé or a subrange
Self~explanatory.

Base type must not be real
Base type of a set may be scalar or subrange.

Base type must be scalar or a subrange
Self-explanatory.

Ervor in type of standard procedure parameter
Self—ezplanatoru._

Unsatisified forward reference
A forwardly declared pointer wss never defined.

Forward reference type identifier in variable declaration

You attempted to declare a variable as a pointer to a type not

yet declared.

120

11%:

120:

121%:

122:

12%5:

126:

127:

128:

129:
130:
131:

133:

134:
135:

136:

Re—specified parameters not OK for a forward declar=d procedure
Self—-explanatary.

Funcfion result type must be scalar, subrange or pointer
A function has been declared with a string or other non—scalar
type as its value. This is not allowed.

File value parameter not ailowed
Files must be passed as VAR parameters,

A forward declared function’s result ftype can‘t be re—specified
Self~explanatory.

Missing result type in function declaration
Self—explanatory.

Error in type of standard procedure parameter

This error is often caused by not having the parameters in the
proper order for builft-in procedures or by attempting to
read/write pointers, enumerated types, etc.

Number of parameters does not agree with declaration
Self-explanatory.

Illegal parameter substitution

Type of parameter does not exactly match the corresponding formal
parameter.

Result %type does not agree with declaration

When assigning types to a function vesult, the types must be
compatible.

Type conflict of operands
Self-explanatory.

Expression is not of set type
Self-explanatory.

Tests on equality allowed only
Occurs when comparing set for other than equality.

File comparison not allowed
File control blocks may not be compared because they contain
multiple fields unavailable ¢o the user.

Illegal type or operand(s)
The operands do not match those required for this operater.

Type of operand must be Boolean
The operands to AND, OR and NOT must be BOGLEAN.

Set element type must be scalar or subrange
Selif—-explianatory.

121

137:

138:

13%;

‘140:

143%:

142:

143:

144

143:

1464:

147:

148:

149:

15G:

151:

152

153:

Set element types must be compatiable
Eelf~explanatory.

Type of variable is not array
A subscript has been specified on a non-array variable.

Index %type is not compatible with the declaration
Occurs when indexing into an array with the wrong type of
indexing expression.

Type of variable is not record
Attempting to access a non-record data structure with the ‘dot’
form or the ‘with’ statement.

Type of variable must be file or pointer
Occurs when an up arrow follows @ variable which is not of type
pointer or file.

Illegal parameter solution
Self-explanatory.

Illegal type of loop control variable
Loop control variables may be only local non-real scalars.

lllegal type of expression

The expression used as a selecting expression in a CASE statement
must be a non-real scalar. -

Type conflict
Case selector is not the same type as the selecting expression,.

Assignment of files not allowed
Self-explanatory.

Label type incompatible with selecting expression _
Case selector is not the same type as the selecting expression,.

Subrange bounds must be scalar
Self-explanatory.

Index ¥ype must be integer
Self-explanatory.

Assignment %o standard funcition is not allowed
Self-explanatory.

Assignment to formal function is not alliowed
Self—exzplanatory.

No such +field in this record
Self-explanatory.

Type error in read)
Self-explanatory. -

S

S

154:

155

156:

197

158:

15%:

1460:
161:
162

1563:

164;

145:

164:

1&7:

168:

16%:
170:
171:
172.

174:

183:

Actual parameter must be a variable
Oceurs when attempting to pass an expression as a VAR paramester.

Control variable cannct be formal or non=local
The controel variable.in a FOR loop must be LOCAL.

Multidefined case label
Self-explanatory.

Too many cases in case statement
Occurs when jump table generated for case over#loms its bounds.

Mo such wvariant in this record
Self-explanatory.

Real or string tagfields not allowed
Self~explanatory.

Previous declaration was not forward
Again forward declared
Parameter size must be constant

Missing wvariant in declaration
Occurs when using NEW/DISPOSE and a variant does not exist

Substitution of standard procedure/function not allowed

Multidefined label
Label more than one statement with same label.

Multxdeclared label
Declare same label more than once.

Undeclared label
Label.on statement has not been declared.

Undefined Label
A declared label was not used %o Iabel a statement.

Error in base set

Ualug parameter expected
Standard file was re—declared
Undeclared external file

Pascal function or procedure expected
Self-explanatory.

External declaration not allowed at this nesting level
Self—-explanatory.

123

187:

121:

193:

194;

201

202:

2p3:

250

251:

293

299

397

400:
401%:

402:

Attempt to open library unsuccessful
Self-explanatary.

Mo private files
Files may not be declared other than in the GLOBAL variable

section of a program or module because they must be statically
allocated.

Not enough room for this operation
Self-explanatory.

Comment must appear at top of program

Error in real number - digit expected
Eelf—explanatory.

8tring constant must not exceed source line

Integer constant exceeds range
Range on integer constants are -32748...32747

Too many scopes of nested identifiers
There is a limit of 15 nesting levels at compile~time.
This includes WITH and procedure nesting.

Too many nested procedures or functions
There is a limit of 15 nesting levels at execution time.

Procedure too long
A procedure has generated code that has overflowed the internal
procedure buffer. Reduce the size of the procedure and try again.

Expression too complicated .

Your expression is too complicated (i.e. too many recursive
calls needed to compile it). Reduce the complication using
temporary wvariable.

Too many FOR or WITH statements in a procedure
Only 1& FOR and/or WITH statements are allowed in a single
procedure (in recursive mode only)}

Illegal character in text
A non—Pascal special character was found outside a quoted string.

Unexpected end of input
"End. " encountered before returning to auter level.

Error in writing code file, not enough room
Belf-explanatory.

Error in reading include ¢ile
Self-explanatory.

124

404
405:
4G4
407:

497

S0C:

Error in writing list file, not encugh room
Self—-explanatory.

Call neot sllowed in separate procedure
Self—explanatory.

Include file not legal
?elf—explanatnrg.

Symbol Table Overtflow
Error in closing code file,
An error occcured when the _ERL file was closed.

Make more Toom on the destination diskette and try again.

A non—standard feature has been used when the T+ or W+ toggles
are enabled. This is a non—-fatal information—only error.

e}

APPENDIX D: ATARI PASCAL FILE 1/0

The
use
way
for

o

sections in this appendix describe ATARI Pascal files and how to
them. Since working from an example will be the most effective

of describing these concepts, program examples have been inciuded
eath area of file handling.

The first section defines the terms used, such as “file, "
"window variable, " and "TEXT. "

The second 5e:tionbshows how to use all the file operation
procedures with examples. These include ASSIGN,. RESET. REWRITE,
sequential file access procedures, CLOSE, etc.

The third section defines Pascal TEXT files. Sample programs
demonstrate the use of built—in Boolean functions EOLN and EOLF,
READLN, WRITELN, formatted I1/0, and writing to the printer.

The fourth section presents some less frequently used file
operations.

1. DEFINITIDNS‘

The terms and de¢1n1tions included here are arranged %o Iogxcallg
distuss the concepts of files as you read through.

FILE

A file is data arranged in logical. equal-sized slements very much
like an open—ended array accessed via a pointer, The size and
arrangement of the data is controlled by your program. A file is

- generally stored on a sercondary storage medium. For the purpose of

this documentation, secondary storage is assumed to be a diskette. You
may write data to a file or read data from a file using the file
operation procedures provided with ATARI Pascal. This data in the file
may be accessed sequentially (record 1 accessed before recard 2,
record 2 is accessed before recurd 3, etc), or directly.

FILENAME

The filename is the name of the file on diskette. It is the name
displayed in the directory listing of the storage medium. In ATARI
Pascal the filename is represented in & program by a STRING {(a dynamic
sequence of ASCII characters). For example, "D2: TEST.PAS" is the
filename in literal string format for the £ile located on drive "D2"
with the name of “TEST" and the extension of “, PAS",

TYPE

The type of +file defines the size and format of the individual file
elements, the smallest accessible umits of a file, For example, a file
of type INTEGER (2 B-bytes) may be visualized as:

- + + e -+
b

1000010001 00000000 100100001 1 00000001 ! OOOOOODI:OOOOOOOO

3
+ "+ o+~ - +
1
1

record O H record 1 record 2 !

This file contains the integers 8,33,and 1 (stored inverted in this
sample). The smallest retrievable element is two bytes. See the
explanations of untyped files or byte files it you want to treat this
file differently than a file of integers. Files may be of the standard
Pascal scalar types: BOOLEAN, INTEGER. CHAR. or REAL. Files may also
be of the structured types STRING, arrays, and records. The pradefined
type TEXT is used for ASCII files. Text files are similiar to FILE of
CHAR except -that they are subdivided into lines, and numbers written
to them are converted to ASCII (and may be -formatted), and numbers
read from them are converted to binmary. A line is a sequence of
characfters terminated by an end-opf~line character, which is usually a
carriage return/line feed. Also, unlike FILE of CHAR, TEXT files will
accept PACKED ARRAYL1. . N} OF CHAR or ARRAY[L..N] OF CHAR (writing an
UNPACKED ARRAY i3 not IS0 standard), and STRINGS as data. A& Bonlean
value is converted to the ASCII sequence "TRUE"™ or "FALSE"™ on write
but the Taverse is not true. For further explanations on typed and
text files, see the operations section.

127

A non—IS0 standard concept regarding files is the UNTYPED file. This
concept is used for fast block input and output (entire sectors are
read or written) regardless of the kind of data contained in the file.

FILE INFORMATION BLOCK (FIB) .
The FIB contains information necessary for the run—time routines to
perform file operations on a disk file. The filename. the type of fthe
file, the access type (read or write): end-of-file and end—of-line
flags, and a diskette buffer (the size of one diskette sector) are
among the kinds of information kept in the FIB. ”

WINDOW VARIABLE OR WINDOW POINTER

The window variable is a buffer the size of a file element and is
iocated just past the FIB in ATARI Pascal. A way to think of it is
that it moves along the file and acts as a ‘window’ to the element of
the file to be read or written. For this reason, it is considered a
pointer ta the +file element being accessed. 1t is denoted as "F™“
where "F" is the name of a file variable. To read from a file, the
2lement which is accessible is moved to the window variable. To write

to a file, the data must be transferred from the window variable to
the file.

FILE VARIABLE

The file variable consists of a FIB and a window variable, It is the
actual data item allocated by the compiler and referenced in a Pascal
program. An example will clarify what a file variable is, as well as
what the FIB and window variable are. The statement, "VAR F : FILE

OF INTEGER; " causes the compiler fo create a file variable F with its
own FIB in the data area and its own window variable (2 bytes) to hold
a i1é6-bit integer. The window variable is denoted by F*. Suppose "I" is
an integer in the same program and has the value 2. Suppose also that
the file already contains the value 1 in the first element as below:

—— e

00000001 { 00000000

t
g

+ -+

+ - ¥
G - e
¥ e 4

+ + == ¢

}.

+

{0G000Q0101 00000000 ¢ window variable

+ + —_—

FIB

-+

4+ e 4

To write the contents of I to the file, the window variable must
tontain 2 (F® := I puts the contents of I into the window variable)
and be "positioned" over the second element of the file. Given the
command PUT(F) described in the operations section., the number 2 is
written to the fils.

128

2. FUNDAMENTAL FILE OPERATIONS

Sample programs and explanations demonstrate the use of file operation
procedures in ATARI Pascal. You will see how to open, create, read,
write, delete, and close files. Demonsitated also are the use of typed
and text files; the file status functions IDRESULT, EDF, and EOLN; and
hoew to assign %o a window wvariahle.

Figure D=1 lists a program named WRITE_READ_FILE_DEMD that creates a
typed file on diskette, writes data to the file, closes the file, &then
re—opens the file to read the data back. The procedures used to
perform these ares ASSIGN, REWRITE, RESET, IORESULT. PUT, BET. and
CLOSE. WRITE is used to display the results on the terminal. The
output work is done in WRITEFILE and the input work is dome in
READFILE. Creating, opening. and closing the file is done in the main
body of the program.

The WRITELN statements on lines 37, 43, 4&, and 49 write the string
passed to them to the default DUTPUT #ile (the console). This

procedure and READLN are discussed later in %this section under TEXT
files,

First note the form of the declaration of OUTFILE. It is declared to
be of type CHFILE, which is defined as a FILE OF CHAR in the TYPE
declaration section (lines 3 and 4). This is done because the file is
passed as a parameter to the WRITEFILE and READFILE routines and a
parameter list cannot declare a new type. For example, the following
parameter declaraction is illegal in Pascal because only type
identifiers are allowed in a pdrameter list:

PROCEDURE WRITEFILE(VAR F : FILE OF CHAR);

1 0 PROGRAM WRITE_READ_FILE_DEMO;

2 0

3 0 TYPE

4 1 CHFILE = FILE OF CHAR:

S 1 VAR

& i QUTIFILE : CHFILE;

7 i RESULT : INTEGER:;

8 i FILENAME: STRINGE1461;

9 i .

10 i PROCEDURE WRITEFILE(VAR F : CHFILE);
i1 1 VAR CH: CHAR;

i2 2 BEGIN

13 2 FOR CH:= ‘0’ TO ‘9’ DO

igq < BEGIN

15 3 F~ = CH; (#CHR(I + ORD(‘0’}); %)
is 3 PUT(F)

i7 3 END;

18 2 END:;

19 1

20 i PROCEDURE READFILE(VAR F : CHFILE};
21 1 VAR I : INTEGER;

22 2 CH : CHaR;

129

23
24
29
26
27
28
29

30

32
33
24
35
36
37
38
39
40
41
42
43
44
45
44
a7
as
49
S0
51
52
53
54

B RGRORANGRANARGEE ARV AR Nl R WA RARARARAR MY VRN

BEGIN
FOR I : O TO ¢ DO
BEGIN
CH = F™;
GET(F);
WRITELNC(CH)Y;
END;
END:;

BEGIN
FILENAME := ‘TEST.DAT‘:
ASSIGN(OUTFILE, FILENAME);
REWRITE(QUTFILE);
IF IORESULT = <> O THEN
.WRITELMN("ETrar creating /, FILENAME}
ELSE
BEGIN
WRITEFILE(DUTFILE);
CLOSE(DUTFILE, RESULT);
IF RESULT = <> 0 THEN
WRITELN(‘Error closing ’‘, FILENAME)
ELSE
BEGIN
WRITELMN(‘Successful close of ‘, FILENAME);
RESET(OUTFILE}:
IF TORESULT = <> O THEN
WRITELN(‘Cannot open ‘., FILENAME)
ELSE
READFILE(QUTFILE)
END:;
END;
END.

Figure D~1: File Input and Output.

130

PROCEDURE ASSIGN(WAR F: FILE VARIABLE; STR : STRING): -

Purpose: Associate the file wvariahle F with an external file on
diskette named in STR.

ASSIGN is the first file operation to be executed in line 34. This
procedure associates a file vavriable (OUTFILE) with an external file
on a diskette given in FILENAME (in this case it is "TEST.DAT"). The
string passed to ASSIGN is placed into the FIB and She name is "
interpreted. After executing the ASSIGN procedure, fthe file variable
passed to the ASSIGN procedure is always associated with the diskette
file named in the name paramester until, or unless., another ASSIGN is
done to the file variable.

PROCEDURE REWRITE(VAR F : FILE WARIABLE):

Purpose: Create a file on diskette using the name in the FIB (either
filled in by the ASSIGN statement previously or null (if null, a
temporary file is created.).

The REWRITE procedure is called in line 35 of Figure D-1. Executing
this procedure causes the creation of @ file with the name contained
in the FIB of F. Any existing files by that name are deleted so

NEVER use REWRITE on a file which contains usable data. In this
example, the file on diskette will be named "TEST. DATY and is located
on the defavlt diskette (because no other diskette was specified in
the file name string passed to ASSIGN}.

If no previous ASSIGN had been performed, the name field of the FIB is
empty and a temporary file is created with the name “"PASTMPOO. $%%. "
Temporary files are generally used for scratch pad memory and data
which is not needed after execution of the program. The digits at the

last two positions in the name are used to give each temporary file a
unique name.

The EOF function and the EOLN function return true because OUTFILE is
an output file. OUTFILE is open gnly for writing sequentially and is
ready to receive data into its first element. If the operation is not
successful, the IORESULT function returns a non zero in this case (see
line 34&).

FUNCTION IORESBULT : INTEGER:

Purpose : Return the integer value inditating status of file
operation.

The value of this function is set after any input or ocutput operatieon
and may be checked at any time. Note in Figure D-1 it is called after
each file operation in lines 34, 42, and 446. It is used here to stop
the program if a file operation did not work as plannsd. Note that you
cannot "WRITE(IORESULT}" because IORESULT is reset to O after each I/0
operation. The meaning of the wvalues returned by IORESULT is presented
in Chapter 3. '

131

. PROCEDURE PUT(VAR F : FILE VARIABLE);

Pﬁrpose : Transfer the contents of the window variable associated with

—

F to the next available record in the file.

Procedure WRITEFILE, beginning on line 9 of Figure D-1, writes the
characters "O" fto “9" to the TEST.DAT file. The PUT procedure causes
the data to be written to the file. Always before executing a PUT, an
assignment is made %o the window variable as in line 15. Following is
a diagram of what is occurring:

100110000 Window variable after assignment (line 15} and CH is equal
o + to ‘G’

-
-+
H

...........

+ -~ 4+
+ -~ 4
4+ o
+ -+
+ -

File before any PUT statement is executed.

P —————
100110000¢ Window variable after PUT in line 1é&.
rm——————— o+
{001100001! H H H H L.

L " T +
File after the first PUT is executed in the FOR loep in Figure D-1
lines 13 through 17.

PROCEDURE WRITE:

PRODEDURE WRITE(expression,...,expression);
PROCEDURE WRITE(VAR F:FILE VARIABLE, expression,....,expression);
Purpose : Shorthand for 'F™ = data; PUT(F); ' also performs

conversions to ASCII on numbers when F is a TEXT file.

Expression includes contents of variables, strings, array elements.
constants, and expressions. When a file variable is not specified,
the defavlt OUTPUT file is assumed. The WRITE procedure does the same
operations on the file as lines 15 and 146. It executes an assignment
followed by a PUT and is merely & shorthand version. CGET and PUT are
provided because the ISO standard requires them and in some versions
of Pascal, such as UCSD Pascal, WRITE can only be used on TEXT files.

PROCEDURE CLOSE(VAR F : FILE VARIABLE; RESULT : INTEGER};

Purpose : Flush the buffer in the FIB associated with F so all data is
written to the diskette.

The next statement to be erxecuted after returning from WRITEFILE is
line 41, where the file is closed. CLOSE must be executed to assure
that the data written to "TEST DAT" is actually saved on the diskette.
Up until thig point the data is written to the buffer in memoary and
now must be saved by flushing the buffer. RESULT is the value returned

132

by the Operating System indicating whether the close is successful. It
is included a3 a parameter to maintsin compatibility with previous
versions of fthe compiler. In this program & value of non zZero means an
error closing the file, and any other value indicates success.

PROCEDURE RESET(VAR F : FILE VARIABLE);

Purpose : Open an existing file for reading., The window variable is
moved to the beginning of the file.

After checking RESULT, the procedure RESET is called in line 47,

RESET opens an existing file for resding and resets the window
variable to the beginning of the file. F™ is assigned the first
element of F. If F is already open, RESET calls CLOSE. EOF and EOLN
return FALSE. If a RESET is done on a file that does not exist,
IORESULT contains a non zero. All other values of IORESULT indicate
success. In the sample program, OUTFILE is opened by the RESET
procedure so that it may be vread. Below is a diagram of the file and
window variable after the RESET is executed in line 47. Note that with
non—computer console typed files, such as OUTFILE. the procedure RESET
does an initial GET., which moves £he first element of the file (in
this case the ASCII value for the number 0) into the window variable.

+mm——————t

10G11000C! Window variable (OUTFILE™) after RESET {(line 47}.
+—— + :

-t e b a e

106110000i100110001100110010100110011100110100i00110101

b e
- - r T -

. e e e

+ -+

The initial GET is not performed on console files or untyped files.
You would always have to type a character before your program could
execute, because the GET procedure is waiting for a character.

~ PROCEDURE GET(VAR F : FILE VARIABLE);

Purpose : Transfer the currently accessible record to the window
variable and advance the window variable.

After checking that the REEET procedure is successful, procedure
READFILE is called in line 51. This procedure reads each element of
the file passed €o it (in this case the element is a character) and
writes that element to the screen. READFILE begins -on line 20. The
work is done in the FOR loop of lines 24 through 29.

The GET procedure advances the window variable by one element and
moves the contents of the file pointed to into the window vaviable.

If no next element exists, EOF becomes TRUE. See Section 3 an TEXT
files for more details on GET and TEXT files. The diagram below
describes what is happening within the FOR loop on lines 24 and 27 the
first time fhrough the loop.

133

{00110000! Window vériable (DUTFILE) after line 26

T —s

. e 3

+00110000100110001100110010¢00110011!00110100500110101¢. ..

After executing line 26, CH contains the ASCII for O (00110000).
After executing line 27, the window variable is advanced.

o= e A

-

et +
i00110001¢ Window variable after GET in line 27.

N <3 e 3= 3
-+

00110000:00110001:00110010!00110011:00110100!00110101

- -+

- 4

=

-+ -

+ -+

Line 28 wriftes the contents of CH to the default output file which is
the computer console. Procedure READFILE displays the characters "O"
through "9" in a column on the computer console. Calling CLOSE after a
RESET it not necessary in the sequential case, because the file
already exists on the diskette and has not been altered in any way. If
DUTFILE is accessed randaomly, a CLOSE might be necessary.

PROCEDURE READ(data, data....,data);
PROCEDURE READ(VAR F : FILE YARIABLE ., data, data, ..., data);

Purpose: When used with non~computer console files execute “data :=
F~i GET(F);" for each data item read. When used with ctomputer console
files, execute “GET(F); data :=F~;". I# F is not specified the default

INPUT file is used. See the section on TEXT files for information an
canversions.

The READ procedure is the same as an assignment and a call to GET. I#

READ is used rather than GET in the current example, the FOR loop body
would look like this:

FOR I := 0 T 9 bBO
BEGIN
READ(CH);
WRITELN(CH)
END;

Reading past end-gf-file on computer conscie input results in a system
crash.

134

3. TEXT FILES

DEFINITION

A TEXT file is a file of AECII characters subdivided into lines. A
line is a sequence of characters terminated by a nonprintable
end—of-line indicator, usually a carriage return and a line feed
charaecter. It is similar to a file of CHAR except that automatic
conversion of numbers is performed when they are read from and written
to the file. Also, variables of type STRING may be read from a text
file and BOOLEANs: STRINGs: and PACKED ARRAYs may be writfen to text
files. Access to a TEXT file is via GET and PUT for character 1/0
{which de not do conversions), READ and WRITE, which have been defined
earlier in this section, and READLN and WRITELN, which are used in
Figure D-2 and defined in this section.

The format of a TEXT file in memory is a FIB and ;.l-bgte window
variable. On diskette, the file looks like the sample below in which a

carriage return is represented by ">", linefeed by "/ and end of #file
bg I!#. [}

-3 o
T -

This is @ linel>/This is the next line>/This is the last linel/#

b -+
- T

FUNCTION EOLN : BOOLEAN:
FUNCTION EOLN(YAR F : TEXT) BOOLEAN;

Purpase: Indicéte the state of the file be returning true ounly when
the window variable is over the end—-of-line charactar. When no file is
specified ¢the default INPUT file is assumed.

This function Teturns true on diskette text files when the last valid

character on a line is read using a READ statement. Because the
sequence of statements for a READ (on non—computer consaole files)
is “CH := F~; GET{(F); ", the window variable is positioned over the

end—of—-line character immediately after the last chavacter is read.
Thus, EOLN returns TRUE on NON-COMPUTER CONSDLE TEXT #iles when the
last character iz read . Also. a BLANK character is returnad instead
of the end-of-line character. The above sequence is reversed on
computer CONSOLE files (READ is an initial call t¢to GET followed by an
assignment from the window variable). When you use computer CONSOLE
files, EOLN will return ¢true after the carriage return / line feed is

read instead of after the last character as in disk files. A blank is
still returned in the c¢haracter.

FUNCTION EOF;
FUNCTION EOF(VAR F : FILE) : BOOLEAN:

Purpose: Indicate the state of a file by veturning true only when the
window variable is over an end—-gf-file character. When no file is
specified, the default INPUT file is assumed.

135

EOF is a function that returns true when the end-of-file character is
read. It is similar to EOLN in that the last character read will set
EOF to true on NON-COMPUTER CONSOLE #iles. On computer CONSOLE files
EOF is true only when the end-of-file indicator is entered. Reading
past end-of~file on computer console files is not supported (the
system can crash). Reading past the end of the file on diskette files
is not supported. A blank is returned by the window variable when EOF
is true. Also, note that on non-text files, EOF may_not become true at
the end of the valid data because the data may -not fill up the entire
last sector of the file.

Figure D-2 is a program that writes data to a text file and reads it
back to be displayed on the output device. The procedure WRITEDATA
actually writes to the TEXT file and the procedure READDATA retrieves
the information stored in the file. The program is divided into a main
body and two procedures to demonstrate the. usefulness of breaking wp
code into blacks that perfarm certain functions. This method makes
code much easier to read and debug.

The file is declared in line 3. Note that the declaration is NOT
"YAR F . FILE of TEXT". TEXT is treated as a special version of FILE
of CHAR., so FILE of TEXT translates toc FILE of FILE of CHAR
{(nonsensicall,

The program begins execution on line 25 with a call to the ASSIGN
procedure. Lines 25 through 29 create a TEXT file named TEXT. TST on
the logged~in drive. If the file creation is successful, thenm the
sample data is initialized in lines 31 and 32, followed by a call ¢o
the WRITEDATA routine in line 33. WRITEDATA uses thae WRITELN
procedure, which is only used with TEXT files.

PROCEDURE WRITE;

PROCEDURE WRITELN;

PROCEDURE WRITELN{(expr.expr,...expr)i
PROCEDURE WRITELN(F);

PROCEDURE WRITELN(F, expr,expr,...expr);

Purpose: Put the data into the file associated with F, ending the
output with an end-of—line character. If no file is specified the
expressions are written to the DUTPUT file. A WRITELN with no
expressions merely outputs a carriage return / line feed. The WRITE

procedure is redefined as a conversion rather than a replacement for
PUT.

This procedure writes the data passed %o it to the file named, placing
an end-of-line character after the last item of data written. If no
file is named, the file is written to the default QUTPUT file. Data
may be literal and named constants, integers, reals, subranges,
enymerated, Booleans: strings, and packed arrays of characters, but
may not be structured types such as records. Numeric data is converted
to ASCII and strings are treated as arrauys of characters (the length
byte is not written to the file).

1256

Formatted Output

In Figure D-2 three lines that make up the body of WRITEDATA (%, 10,
and 11) do the actual file output. Line 9 sends the contents of the
variable string S followed by a carriage return / line feed to the
TEXT file F. Line 10 formats the contents of I in & field of four
spaces and sends this formatted output to the file F. The real number
literal in line 11 is formatted into a field of nine spaces, four of
which must be to the right of the decimal place. This formatted number
is then written to the file F. The field format may be specified for
any data type. For non—real numbers only the field width is specified.
not the number of places after the decimal point. The data is right
Justified in the field. If a number is larger than the & 5 significant
digits can represent, the output is always expressed in exponental
notation. Also, if the field width is too small to express the number
it is written in exponential ngtation. Fer further information on
formatting consult a Pascal textbook and experiment.

The body of the WRITEDATA procedure could have been written as follows
with the same results.

WRITELN(F, 8);
WRITELN(F, I:4, 45.6789 : 2@ : 4);

Control returns to the mein bady of the program and line 34 is
execvted. If the CLOSE is successful, the RESET in line 3% opens the
file F (which is still associated with "TEXT. TST* on the diskette),
moving the window variable to the beginning in preparation for reading
data from the file F. Following a successful RESET, the procedure
READDATA is called to read back the information placed in YTEXT. TST"
and display it at the computer conscle.

Statement

V00O B GA e

Nest

OO MNWRWWBWWMNNMRNMNMNUOLDR =t e, O NDARNRDDN=~=PDRNNR R Q00

Source Statement
PROGRAM TEXTI1O_DEMO;:

VAR F : TEXT:
I : INTEGER:;
S . STRING;

PROCEDURE WRITEDATA;
BEGIN

WRITELN(F,S);:

WRITEC(F, I:4);

WRITELN(F, 45. 6789:9:4);
END;

PROCEDURE READDATA;
VAR R : REAL;
BEGIN
READLN(F, S};
READ(F, I);
READ(F, R);
WRITELN(S);
WRITELN(I: 4, ‘,R.:9:48);
END;

BEGIN

ASSIGN(F, 'TEXT. TST “);

REWRITE(F);

IF IDRESULT <> O THEN
WRITELN('Error creating’)
ELSE :

BEGIN

I ;= 3G
S := ‘THIS IS A STRING';
WRITEDATA;
CLOSE(F, I
IF IORESULT <> 0 THEN
WRITELN{ ‘Error closing’)
ELSE
BEGIN
RESET({F);
IF IDRESULT <> O THEN
WRITELN(‘Error opening’}
ELSE ,
READDATA;
ENDi
END;
END.

Normal End of Input Reached

Figure D-2 Text Files

138

PROCEDURE READ:

PROCEDURE READL.N;

PROCEDURE READLN(F};

PROCEDURE READLN(F, wvariable, variable,...,variable};

Purpose: Read from the file associated with F into the variables
listed. In all cases: read until an end~of-line character is found.
skipping any unread data, and advance %o the beginning of the next

line. READ is vedefined to perform conversion of reals: Booleans. and
integers.

READLN: like WRITELN, has as parameters an optional file variable and
any number of variables %o Teceive the data from the file. If the file
variable is not specified, input is taken from the default INPUT file,
the keyboard. The variables in the parameter list are the same type as
the data being read from the file. However, no type checking is done.
so it is up %o you to construct a parameterlist compatible with the
format of your file. Any numbers are converted on input but the
formatting is lost. Numbers must be separated from each other and
other data types by @ blank or a carriage return line feed.

READLN recognizes but does not transmit the end—of-line character. The
action is to read data until it encounters an end—of-line and
ctharacter. The action is to read doata until it encounters an
end—of~line and advance the window variable to the beginning of the
next line. The data in “TEXT. TST" looks like the following:

THIS. IS A STRING:/
35 45. 67892/4

After veading the string in the first line tp read the integer 35, you
must use READ and not READLN., I+ a READLN were used here, the 35 would
be read properly because the first blank terminates the number.
However. the window variable would be advanced past the real number ¢o
the end of the file. Then, if you try to read the T=2al, all one gets

is EOF, and then you wonder what happened to the real number knouwn to
be out there. .

STRINGS must always be read with a READLN because they are terminated
with end—of-line characters. If the data to the file had been ’‘THIS
I8 A STRING 35>/, the value returned for S would b2 the entire line,
including the ASCII 235. -

i.ines 20 and 21 write the data to the computer cansole in the same
format as it is contained in the file

After executing READDATA, the program is finished. A CLOSE is net

necessarTy because the data in “TEXT. TST" is not altered in any way
since the last CLOSE on t€hat file.

139

Writing to the Printer

Writing to the printer is very simple. as demonstrsted in Figure D-3.
A file variable is declared to be of type TEXT as in line 5 of Figure
D~3. This file variable is ASSIGMed %o the printer in lime 11. The
filename ‘P: passed to ASSIGM means that F is to be associated with
the list device so0 that all data written to F is routad to the
printer, REWRITE is called to open the list device for writing. Note
that a CLOSE is not necessary since the data has already been written
and the buffer does not need to be flushed. Lines 23 and 25 use
standard Pascal formatting directives. In line 23, R is to be written

in a field seven characters long, with three digits to the right of
the decimal place.

Statement Nest Source Stztement
1 0 PROGRAM PRINTER;
2 0 {#WRITE DATA AND TEXT T8 THE PRINTER #)
3 G
4 ¢ VAR
S 1 F : TEXT;
) i I : INTEGER:
7 1 ‘S : STRING;
8 1 R : REAL;
@ 1
10 i BEGIN
i1 1 ASBIGN(F, 'P: 7);
i2 1 REWRITE(F);
i3 i IF IORESULT <> O THEN
14 1 WRITELN(‘Error rewriting file’)
is 1 ELSE
16 i BEGIN
17 2 S := ‘THIS LINE IS A STRING';
ig 2 I := 55;
i9 2 R := 3 1415&3;
20 2 WRITE(F.,S):
21 2 WRITE(F, I);:
22 2 WRITELN(F);
23 2 WRITELN(F,R: 7:3);
25 2 WRITE(F,I1:4,R:7:3);
26 2 WRITELN(F);
27 2 WRITELN(F, ‘THIS IS THE END. ")
28 2 END
29 O END. .
29 O
=t o) Normal End of Input Reached

Figure D=3 Writing to a Printer and Number Formatting

140

&. MISCELLANEDOUS FILE RDUTINES

A sample program is not provided for the following routines.

PROCEDURE OPEN (F: FILE VARIABLE, TITLE : STRING; VAR RESULT
INTEGER)

Purpose : Identical to the sequence ‘ASSIGN(F, TITLE) i RESET(F}; ‘.

PROCEDURE CLOSEDEL (F : FILE VARIABLE; VAR RESULY : INTEGER);

Purpose : Close file F and delete it. Used with temporary files.
Exactly the same as CLOSE followed by PURGE.

PROCEDURE PURGE (F : FILE VARIABLE);

Purpose : Delete the file associated with F from the Diskette. An
ASSIGN must be executed sometime before the call to PURGE so that the
file control block for F contains the name of the file to be deleted.
Dn some operdating systems, the file may be required to be closed
before this procedure can function properly. In this case CLOSEDEL is
a useful procedure.

i41

APPENDIX E: BIELIOGRAPHY

Grogono, Peter, Programming in Pascal . Addison-Wesley, Reading,
Massachusetts, 1978.

A good introduction for self-teaching.

Wilson, I.R, and Addyman, A.M, A Practical Intreduction to Pascal .
Springer—-Verlag: MNew York. 1979,
An advanced textbook

Jensen: Katheleen, and Wirth, Niklaus, Pascal User Manual and
Report . Springevr-~verla, New York, 1974.
First definition of Pastal. Best used as a reference document.

"Draft Proposal ISO/DP 7185: Programming Languvages—Pascal®
Not designed for the novice. A precise language definition.
May be obtained from American National Standards Institute.
International Sales Department,

1430 Broadway

New York. New York 10018

Findley, William, and Watt, David A., - PASCAL: An Introduction %o

Methodical Programming . Computer Science Precs, Potomac:, Maryland,
1978.

Conway, Richard, Gries, David, Zimmerman. E. Carl, A Primer on
Pascal Winthrop Publishers, Cambridge, Massachusetts, 1976,

Miller, Alan R.. Pascal Programs for Scientists and Engineers’
Sybex: Inc.., Berkeley, CA., 1981.

De Re Atari, "A Guide to Effective Programming®, APX-90008

ATARI 400/800 Disk Operating System Il Reference Manual, C014&6347

ATARI 400/800 BASIC Reference Manual, C015307

14

APPENDIX F: Player/Missile Demo Program

The Player/Missile Demo prcgram may be entered using the ATARI
Program—Text Editor and used as an example for modular compilation and
use of the built~in graphics and sound procedures. Compile each of the
modules sepavately (PMDEMO, PMMIS:, PEEKPOKE, PMSND). Then link these
modules together along with the Graphics and Sound Library (GRSND).
When the linker tesponds with the asterisk repond with the following:

D2: PMDEME, 02: PMMIS, D2: PMSND, D2: PEEKPOKE, GRSND, PASLIB/S
Once linked together you may execute the program using the "Run"

command. A jJoystick is required to move the player and fire the
missile.

143

PROGRAM PLAYER/MISSILE (INPUT.DUTPUT);

(%

This program, written in Pascal, demonstrates the player/missile
capabilities of ATARI Pascal. It is based on the player/missile
demonstration program written in BASIC. Error checking has been
implemented so that the player does not cause system crashes when it
goes off the screen. The player is held just off the visible screen
until the input from the joystick changes its position te a point on
€he visible screen. In addition a visible missile will be fired when
the button on the joystick is pressed. Also implemented are sounds
associated with the movement of both the player and the missile,

Four modules must be compiled separately and then linked together to
form the executable object file. These modules include PMSOUND

(D2: PMSND. PAS), PEEKPOKE(D2: PEEKPOKE. PAS), PMMISSILE(DZ2: PMMIS. PAS} and
program player/missile (D2: PMDEMOD. PAS).

The executable file is D2:PMDEMO. COM and can be ®un by $yping "R* in
the Pascal monitor. A joystick is required for program execution.

The player will respond to the joystick by moving vertically,
horizontally, and diagonally. The missile is fired by pressing the
button on the joystick. Both the player and the missile may be moving
simul tanesusly.

#)

TYPE
SCRN_TYPE=(FULL _SCREEN, SPLIT_SCREEN};
CLEAR_TYPE=(CLEAR_SCREEN, DO_NOT_CLEAR_SCREEN);

vaR
PMBASE, (#PLAYER-MISSILE BASE ADDRESS#)
X; (#PLAYER AND MISSILE HORIZONTAL POSITION*}
Y, {(#PLAYER VERTICAL POSITION#*)

MISY, (*MISSILE VERTICAL POSITION#*)
A: INTEGER;

FIRED: BOOLEAN; (#FLAG SET TO TRUE WHEN MISSILE FIRED, RESET WHEN
MISSILE HAS MOVED OFF THE TOP OF THE SCREENH)

EXTERNAL PROCEDURE INITCRAPHICS (MAX_MODE: INTEGER);

EXTERNAL PROCEDURE GRAPHICS(MODE: INTEGER; SCREEN: SCRN_TYPE; CLEAR:
CLEAR_TYPE}; '

EXTERNAL PROCEDURE SETCDLOR(REGISTER-HUE:LUMINANCE:INTEGER};
EXTERNAL PROCEDURE SBUND(VDTCE.PITCH:DISTDRTIDN.VDLUME:INTEGER):
EXTERNAL FUNCTION STICK(STKNUM: INTEGER): INTEGER;

EXTERNAL FUNCTION STRIG(STKNUM: INTEGER): INTEGER:

EXTERNAL PROCEDURE MAKENOISE;: (#IN MODULE PMSOUND#*)

144

EXTERNAL PROCEDURE BIGBANG: (#IN MODULE PMMISSILE#)
EXTERNAL PROCEDURE MOVEMISSILE: (#IN MODULE PMMISSILE#!}
EXTERNAL PROCEDURE POKEBYTE(ADDR, VAL: INTEGER); (#IN MODULE PEEKPOKE#)

EXTERNAL FUNCTION PEEKBYTE(ADDR: INTEGER): INTEGER; (#IN MODULE
PEEKRPOKE#)

PROCEDURE SETPLAYER;:
{(#SETPLAYER inifializes the player by first clearing out the player’s
section of memory and then initializing that memory with the proper

values so that the player takes on the shape printed below. #)
VAR 1. INTEGER:

BEGIN
(#CLEAR PLAYER AREA IN MEMORY:)
FOR I:=PMEASE+S512 TO PMBASE+440 DO POKEBYTE(I, 0);

POKEBYTE (704, 108); (#SET PLAYER COLOR TO PURPLE#®:
{#INITIALIZE PLAYER AREA WITH MISSILE SIZE, SHAPE#)
: =PMBASE+512+Y;

POKEBYTE(I, 153); (#PLAYER WILL LOOK LIKE THIS: %)
I:=I+1;

POKEBYTE(I, 189} {% #)

I.=I+1; (= #* 3

POKEBYTE(I, 255, (% %)

I:=1+1; (# * 3}

POKEBYTE(I, 189); (3 3}

I:=1I+1;

POKEBYTE (I, 153}

ENDi

PROCEDURE MOVERIGHT:
(#MOVERIGHT moves the player to the right on the screen by
incrementing the player’s horizontal position register. %)

BEGIN
IF X<214 THEN BEGIN (#MOVE RIGHT ONE COLOR CLOCK#}
X:=X+1; (#INCREMENT#}
(#POKE NEW VALUE INTC HORIZONTAL POSITION REGISTER=®)
POKEBYTE (53248, X)

END (#ELSE HOLD STILL, JUST OFFSCREEN AT RIGHT:?
END:

PROCEDURE MOVELEFT;

(#MOVELEFT moves the player to the left on the screen by decrementing
the player’s horizontal position register. %)

BEGIN
IF X>40 THEN BEGIN. (#MOVE LEFT ONE COLOR CLOCK#)
X:=X=1; (#DECREMENT#)

(#POKE NEW VALUE INTO HORIZONTAL POSITIOM REGISTER®)
POKEBYTE (53248, X) '

END (#ELSE HOLD STILL., JUST OFFSCREEN AT LEFT*)
END;

145

PROCEDURE MOVEUR;
(#*MOVEUP moves the player up on the screen by moving the player up in
the player ‘s memory area. %)
VAR I: INTEGER;
BEGIN
IF Y>1 THEN BEGIN (#*MOVE PLAYER UP ONE UNIT IN MEMORY AND ON
SCREEN*)
FOR I:=0 TO-& DO POKEBYTE(PMBASE+S11+Y+1,
PEEKBYTE(PMBASE+512+Y+1));
Y:=Y—1 (#PLAYER HAS MOVED UP ONE UNIT#)

END (#ELSE HOLD STILL, JUST OFFSCREEN AT TOP OF SCREEN:®)
END;

PROCEDURE MOVEDOWN;
(#MOVEDOWN moves the player down on the screen by moving the player
down in the player’s memory area. #)
VAR I: INTEGER;
BEGIN
IF ¥<120 THEN BEGIN
{*MOVE PLAYER DOWN ONE UNIT ON SCREEN AND IN MEMORY#)
FOR I:=4 DOWNTC O DO POKEBYTE (PMBASE+S512+Y+1, PEEKBYTE
(PMBASE+511+Y+1)); :
Y:=Y+1 (#PLAYER HAS MOVED DOWN ONE UNIT#)

END (#ELSE HOLD STILL. JUST OFFSCREEN AT BOTTOM OF SCREEN=#)
END;

BEGIN (#MAIN PROGRAM:)

INITGRAPHICS(0};

GRAPHICS (0, FULL_SCREEN_, CLEAR_SCREEN); (#CLEAR SCREEN#}
POKEBYTE(755, 1); (#POKE OUT CURSOR#)

SETCOLOR(2, 0, 0); (*SET BACKGROUND COLOR TO BLACK#)

X:=120; (#SET HORIZONTAL COORDINATE OF PLAYER#)

Y:=48; (#SET VERTICAL COORDINATE OF PLAYER#)

A: =PEEKBYTE(105)-8;

POKEBYTE (34279, A); (#*SET PLAYER-MISSILE ADDRESS BASE REGISTER#)

PMBASE: =256#%A; (#SET PLAYER~MISSILE ADDRESS+®)

POKEBYTE(S5%, 46); (#SET DMACTL. IN OS SHADDW#) .

POKEBYTE(S3277,2); (#SET GRACTL--ENABLE PLAYER AND MISSILE DMA TOQ
PLAYER AND MISSILE GRAPHICS REGISTERSH)

POKEBYTE (53248, X); (#SET PLAYER HORIZONTAL POSITIONS)

SETPLAYER; (#CLEAR AND SET PLAYER-MISSILE MEMORY AREA#)

(# NOW FOR THE MOVEMENT AND MISSILE FIRING #)
FIRED: =FALSE; (#INITIALIZE "FIRED" FLAGH)
WHILE 4>2 DO BEGIN

A: =STICK(OD); :
IF A<>15 THEN MAKENDISE: (#GENERATE MOVEMENT SOUND#)
{ #MOVEMENT# 3
IF A=5 THEN BEGIN
MOVERIGHT;
MOVEDOWN
END ELSE IF A=4 THEN BEGIN
MOVERIGHT;
MOVEUPR

145

END ELSE IF A=7 THEN MOVERIGHT
ELSE IF A=% THEN BEGIN
MOVELEFT;
MOVEDOWN
END ELSE IF A=10 THEN BEGIN
MOVELEFT;
MOVEUP :
END ELSE IF A=11 THEN MOVELEFT
ELSE IF A=13 THEN MOVEDDWN
ELSE IF A=14 THEN MOVEUP
ELSE IF A=15 THEN SOUND(O. 182,2, 0}
(#PLAYER IS STANDING STILL, S0 MAKES NO SOUNDG#*)
IF FIRED THEN MOVEMISSILE (#CONTINUE MISSILE ON ITS TRAJECTORY#)
ELSE IF STRIG(0)=0 THEN BIGBANG; (#FIRE MISSILEx)
END; (#WHILE#®;
END.

147

MODULE PMMISSILE;
{#¥*The routines in this module handle the firing and flight of the
missile for the player/missile graphics demonstration program. #)

VAR PMBASE, X, Y, MISY: EXTERNAL INTEGER;
FIRED: EXTERNAL BOOLEAN;

EXTERNAL FUNCTION PEEKBYTE(ADDR: INTEGER): INTEGER;:
EXTERMAL PROCEDURE POKEBYTE (ADDR, VAL: INTEGER};

EXTERNAL PROCEDURE SOUND(VOICE, PITCH, DISTORTION, VOLUME: INTEGER);

PROCEDURE MOVEMISSILE;
(#Movemissile is called by procadure bigbang when the missile is
first fired, and later by the main program as the missile continues
its trajectory. The main program calls movemissile until the missile
has moved off the top edge of the screen and the "fired" flag has been
rosek, #)

VAR I: INTEQER;

BEGIN

IF MISY>5 THEN BEGIN

FOR I:=0 TO 1 DO POKEBYTE(PMBASE+383+MISY+1, PEEKBYTE (PMBASE+384+
MISY+I));

(#MOVE MISSILE UP IN MISSILE MEMORY:)
MISY: =MISY-1 (#MISSILE HAS MOVED UP ONE=#)

END; . :

IF MISY<=3 THEN FIRED: =FALSE (#MISSILE HAS MOVED OFF THE TOP EDGE

OF THE SCREEN, SO RESET THE "FIRED"

FLAGH®)
END;

PROCEDURE BIGBANG:

(#Bigbang is called whenever the user presses the fire bution on the
joystick. Bigbang launches the missile and starts it.on its
trajectory. #)

YAR I: INTEGER;

BEGIN
FOR I:=PMBASE+384 TO PMBASE+512 DD POKEBYTE(I, O);:
(#CLEAR MISSILE AREA IN MEMORY#) .
SOUND(3, 46, 12, 14); (#FIRE!'! (BEGIN FIRING NOISE}#}
POKEBYTE (53260, G); (#SET NORMAL MISSILE SIZE%)
FOKEBYTE (53252, ¥+3);
(#SET MISSILE HORIZONTAL POSITION EGUAL TO PLAYER HORIZONTAL
POSITION*)
MISY:=Y~1; (#SET MISSILE VERTICAL POSITION EQUAL TO THE POINT JUST
ABOVE PLAYER VERTICAL POSITION#®)
I: =PMBASE+384+MISY;

POKEBYTE(I, 3); (#SET MISSILE SHAPE IN MEMORY#)
FIRED: =TRUE; (#SET MISSILE FIRED FLAG TO SHOW THAT A MISSILE HAS
BEEN FIRED#))

148

MOVEMISGILE;:

(#START MISSILE ON ITS TRAJECTORY#)

SOUND(3. 44, 12,0 (#STOP THE FIRING SOUNDx)

END:

MODEND.

149

MODULE PMSOUND;

(#This module contains procedure makengise, which controls the sound
generation for the player‘s movement. This procedure was put into its
own module. #)

EXTERNAL PROCEDURE SUUND(VQICE.PITCH.DISTGRTIDN.VDLUME:INTEGER):
PROCEDURE MAKENDISE;

(#GENERATE ENGINE SOUND WHEN PLAYER MOVES. #}

BEGIN

SOUND (G, 182, 2, &)

END;

MODEND.

150

MODULE PEEKPOKE:

(#This module contains procedures for performing BASIC style PEEKSs
and POKEs. #)

PROCEDURE POKEBYTE (ADDR, VAL: INTEGER):
(%

POKEBYTE: BASIC STYLE OF MEMORY LOCATIONS
POKEBYTE PROVIDES A METHOD, SIMILAR TO THE BASIC POKE, FOR THE
PASCAL UBER TO SET MEMORY LOCATIONS.

ENTRY: POKEBYTE(ADDR.VAL); (SAMPLE CALL)

= ADDR = ADDRESS TO BE POKED
Val = VALUE TO BE POKED INTQ ADDRESS

EXIT: CONTENTS OF ADDR IS NOW VAL

CHANGES: ADDR (ADDRESS:

CALLS: -NONE-

#)

VAR |
PTR: “CHAR; (#POINTER TO ADDRESS TO BE CHANGED%}

BEGIN
PTR: =ADBDR; (#SET PTR TO POINT AT DESIRED ADDREGG#*)

PTR™: =CHR(VAL} (#POKE NEW VALUE INTO ADDRESS POINTED ?D BY PTR#)
END;

FUNCTION PEEKBYTE(ADDR: INTEGER): INTEGER:
(3

PEEKBYTE: SIMPLE BASIC STYLE PEEK AT MEMORY LOCATIONS

PEEKBYTE PROVIDES THE PASCAL USER WITH A METHOD, SIMILAR TO THE.

BASIC PEEK, TO FIND OUT THE CONTENTS OF MEMORY LOCATIONS.
ENTRY: INTEGERVARIABLE := PEEKBYTE(ADDR); (SAMPLE CALL)
ADDR = ADDRESS TO BE LOOKED AT
EXIT: PEEKWBYTE = CONTENTS DOF THE ADDRESS GIVEN BY ADDR
CHANGES: INTEGERVARIABLE IN THE CALLING ROUTINE
CALLS: —NONE-
*}

VAR
PTR: “CH&R; (#POINTER TO ADDRESS TO BE LOOKED AT#)

BEGIN
PTR: =ADLDR; (#SET PTR TO PDINT TO DESIRED ADDRESS#)
PEEKBYTE: =ORD(PTR™) (#PEEKBYTE "PEEKS AT" AND
RETURNS CONTENTS OF ADDRESS POINTED TO BY PTR#*)
END;

MOBEND.

151

APPENDIX G: HELPFUL HINTS

The following are assorted statements that may prove to be useful when
using the ATARI Pascal Langusge System.

1.

Compilation of Pascal programs using Floating Point numbers (REALS)
requires that the Include file FLTPROCS or STDPROCS be identified
within the daclaration body of the source. In addition the FPLIB
must be linked with your compiled source and PASLIE. Failure to do
so will cause your compilation and/or linking to error. Refer to
the demo program CALC for an example.

Identifiers are significant to only eight characters.

CLOGEDEL can be used with any file so be careful. You may
accidentally delete something that you didn‘t expect to.

While standard“procedures are built into the compiler. others
require the appropriate Include files for declaration purposes.
Check these files to determine if you need them. These Include

files may be listed on $he printer by use of the copy option under
DOE.

The reserved word "PREDEFINED" allows certain procedures and
functions to become part of the scope surrounding the program. In
addition any file paramefer is passed as two parameters as required
by the run—time routines.

152

INDEX

ABSOLUTE variables, 22,
ADCR 41
AND
and 14 bit variables, F4
ARCTAN 104
ARRAY
as procdural paramsters 102
storage = 29
ASSIGN 50,
Assignment compatibility) 90
Available memory message 8,
BCD REAL . , 71
Bit and byte manipulation 38,
BLOCKREAD 52
BLOCKWRITE 52
BOOLEAN . 70
Built—-in procedureaes
ADDR 41
ASSIGN 50
BLOCKREAD 52
BLACKWRITE 92
CLOSE o4
CLODSEDEL. 24
LRBIT 38
CONCAT 45
CoPY 44
DELETE 48
EXIT 37
FILLCHAR 43
GNB 51
HI 40
INSERT 49
IOCRESULT 56
LENGTH 44
Lo 40
MAXAVAIL 27
MEMAVAIL 57
MOVE . 35
MOVELEFT : 395
MOVERIGHT 35
OFEN 33
POS 47
SETBIT 38
SHL 3%
SHR 39
SIZEOF 42
summary of . o8
SWaP : 40

59

131

13

2?3

153

TSTBIT 28

Wb 21
PURGE 55
BYTE 71, 86

Byte manipulation
(see Bit and byte manipulation)

CALL. PAS 7
Chaining 103
Chaining
absolute variable communication 32
example 33
global variable communation 32
how-~to 32
maintain heap 32
CHAR . 70
CHR 70, 90,
CLOSE ' 54, 132
CLOSEDEL o4, 141
CLRBIT 38
Comments :
syntax 83
Compatibility with UCSD 77
Compiler control toggles
entry point control $E iq
listing controls sP/s$L 15
run—time Tange checking control $R 1§
run—time exception checking control $X 15
souTce code include mechanism $I 14
strict/relaxed type checking control $T/%4W, 14
suUmmary 16
syntax 14
Compiler
output 8, 13
output. 8, 13
available memory 8
compile time informational output 7. 13
execution 7, 12
operational description 12
PHASE 1 . 13, 18
PHASE 2 13
remaining memory B8
sample output 7
separate compilation 26
step-by—step instructions 7
system requirements 3
user table space 8
CONCAT 45
Confromant arrays 102
Constant data at compile—time 61
CoPY 44

105

154

Data storage
Bata types
BOOLEAN
BYTE
CHAR
INTEGER
range
REAL
SET
size
STRING
WORD
DELETE .
Distributiaon disk
contents
minimum coanfiguration

End of file
EOF
EOLN
Error handling
run—time
message

type conflict
Error messages
Exception checking

{see Compiler control toggles?

Error

EXIT
Extensions to ISO standard
(see ISO standard extensions)
Ezxtensions
summary
EXTERNAL
and
and

entry point symbols
modular compilation
and procedures/functions
and variables

routines as parameters

FIB
(see File Information Block?
File Information Block
File wvariable
File variable untyped files are allowed

Filename
definition
Filenames
associating external and internal
compiler input
linker input
Files
ASCII text

70

70
71
70
71
70
71
75
70
71
71
48

134, 135
133
133

128,
104,
104,

&8
?0
ig, 118

a7

81

14
26
26
27
26

128

128
20

127
50

7, 12
9, 19

155

ASEIGN procedure

associating files with external

name's

built-in procedures
chaining

closing

creating

definition

deleting

devices E:, S::. K:, P:,

ertor handling
example

fast byte routines
formatted output
hex output

implied conversions
iocal

local files and linker /D switch
opening (see also RESET)

pre~definad type TEXT
primitive file access
printer outpul
tamporary, (see local)
fext
untyped
window variable
writing to printer
FILLCHAR
Floating Poin{ REAL
Formatted output
FORWARD
FPLIB. ERL

GET

GNE

6070
GSSND. ERL

Hesp management
IS0 standard
MEMAVAIL and MaXAVAIL

parameters
Herzadecimal numbers
HI
I1/0

{see Files}
Identifiers

and &

external signifigance

legal Pascal

133
51
Q6

4,

142
57
104
106
40

83,
26

83

igq

138

132

137

%,

143

84

+ 133

19,

71,

134

1592

1346

Include files
INLINE
code examples
syntax
INSERT
INTEGER
IORESULT
IS0 standard extensions
absolute variables
additions to assignment compatibility
rules

4,

&1
&0
49
71
56,

?1

95

ENF syntax description of ATARI Pascal, 109

built—in procedures and functions
chaining

34
32

concise list of ATARI Pascal facilities, 1

ELSE clause on CASE statement
external procedures
INLINE
modular compilation
null strings
operators
WRD type transfer function
I80 standard
assignment compatibility
changes from Jensen and Wirth for
FOR loops :
draft used by ATARI
extensions for conformant arrays
summary of features
.type compatibility

LENGTH
Line
Line numbers
Linker
/D and chaining
attributes of compatible modules
command file facility switch /F
data origin switch /4
effects of /P and /D on .COM file
cantents
effects of using /D on local files
extending map switch /E
-gaining memovry space
input filenames
invocation
library search switch /S
load map switch /L
program origin switch /P
sample
sample output
saving space by vusing /D
switch summary

96
°g
&0
26
84
94

104

S0

97
1
102
81
20

44
135
18

a2
22
20
i9

20
20
19
19
19
19
19
19
20

9

9
20
21

5. 8.

131,

i4,

138,

132

140

157

switches
LINK
Listing
Lo
LLocal +files
(see Files)

MaAXAVAIL

MEMAVAIL

Modilar compilation
and. $E toggle
and EXTERNAL
example
overviesw
syntax

- MOVE

MOVELEFT
_MOVERIGHT

- NOT .
and 16 bit variables

© - .ODD

OPEN
Operators

T - AND
- and 16 bit variables
- NOT
OR
.. QOption Switches
L compiler
. linker

'f:;. OR

- .and 14 bit variables
- ORD
Qutput
formatted

PACKED

PASLIB

- PASLIE. ERL

Pointers

Portability

- POS

Printer
assignment
writing example
writing to

Program sample
CHAIN Demo

57
57

26
26
26
26
26
35

35

94

70,
53,

70,
3

70,
70,

14
21

23
70,

137

70,
2,

89
14
47

20
1490
140

i04
133, 141

94

94
94

71, 90,

86
152

104

158

CEMOCON {(confeormant arrays)
GEMO_INLINE

External_Pemo (Modular compilation)

PRINTER

Pracedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedurs
Procedure
Procedure
Procedure
Procedure
Procedure
Procedurs
Preocedure

ACCESS (strings?
ADDR DEMO

ASSIGN (strings)
COMPARE (strings)
CONCAT_DEMO
CoPY_DEMQ
DELETE_DEMO
EXITTEST

FILL _DEMO
HI_iL.0_SWaP
INSERT_DEMO
MOVE_DEMO
POS_DEMO
SHIFT_DEMO
SI1ZE_DEMO
TST_SET_CLR_BITS
TEXTID_DEMO

Procedure WRITE_READ_FILE_DEMO
PURGE
PUT

Range checking
(see Run—time}
READ
READLN
REAL
BCD
floating point
RECORD
storage
Remaining memory message
Requirements
run—-time
system
Reserved words
RESET
REWRITE
Run—time Library
saurce
Run—time
error handling
exception checking
fatal errors
range checking

Scalars
storage
SET

134
139

71
71

a9

117
133
131

48
68
&9
&8

29

30

199

SETBIT
SHL
SHR
SIZEOF
Space reduction
and linker /D switch
STRING
STRING implementation details
STRING
access
and READLN o
assignment
compariseon
CONCAT
coPY
default length
definition
explicit length declaration
null sfring
Tun—time error
use as arrays of characters
Strings
DELETE
INSERT
LENGTH
POS
SWAP
Symbois
Symbols
identifier significance
use of @ in identifiers
uyse of hexadecimal numeric literals
use of underscore in identifiers

TEXT files
definition
TSTBIT
Type checking toggle
Type conflict
arror
Types
ABSOLUTE attribute for var1ables
data implementation
extended
file types L
implementation of PACKED
pointers
pre—-defined
Tange of SET ¢ype
restrictions on use of ABSOLUTE
with strings

=

1460

User table space

Window variable
{see Files)
WNB
WORD
WRITE
WRITELN
and text files

o1
71,
132

134

86

o

Limited Warranty on Media and Hardware Accessories. Atari, Inc. (“Atari”) warrants to the original
consumer purchaser that the media on which APX Computer Programs are recorded and any
hardware accessories sold by APX shall be free from defects in material or workmanship for a
period of thirty (30) days from the date of purchase. If you discover such a defect within the 30-day
period, call APX for a return authorization number, and then return the product to APX aiong with
proof of purchase date. We wiil repair or replace the product at our option. If you ship an APX
product for in-warranty service, we suggest you package it securely with the problem indicated in
writing and insure it for value, as Atari assumes no liability for loss or damage incurred during
shipment. :

This warranty shall not apply if the APX product has been damaged by accident, unreasonable
use, use with any non-ATARI products, unauthorized service, or by other causes unrelated to
defective materials or workmanship.

Any applicabile implied warranties, including warranties of merchantability and fitness for a
particular purpose, are also limited to thirty (30) days from the date of purchase. Consequential or
incidental damages resuiting from a breach of any applicable express or implied warranties are
hereby excluded.

The provisions of the foregoing warranty are valtid in the U.S. only. This warranty gives you
specific legal rights and you may also have other rights which vary from state to state. Some states
do not allow limitations on how long an implied warranty {asts, and/or do not allow the exclusion of
incidental or consequential damages, so-the above limitations and exclusions may not apply to
you.

Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been
written by people not empleyed by Atari. The programs we select for APX offer something of value
- that we want 10 make available to ATARI Home Computer owners. In order to economically offer
these programs to the widest number of peopie, APX Computer Programs are not rigorously
tested by Atari and are sold on an “as is” basis without warranty of any kind. Any statements
concerning the capabilities or utility of APX Computer Programs are not to be construed as
express or implied warranties.

Atari shall have no liability or responsibility to the original consumer purchaser or any other
person or entity with respect to any ciaim, loss, liability, or damage caused or alleged to be caused
directly or indirectty by APX Computer Programs. This disclaimer inctudes, but is not limited to,
any interruption of services, loss of business or anticipatory profits, and/or incidental or
consequential 'damages resulting from the purchase, use, or operation of APX Computer
Programs.

Some states do not allow the limitation or exclusion of implied warranties or of incidental or
consequential damages, s0 the above limitations or exclusions concerning APX Computer
Programs may not apply to you.

For the complete list of current
APX programs, ask your ATARI retailer
for the APX Product Catalog

ATARI®

",

PROGRAM
EXCHANGE
P.Q. Box 3705
Sento Clcro. CA 95085

We're interested in your experiences with APX programs
and documentation, both favorable and unfavorable.
Many of our authors are eager to improve their programs
if they know what you want. And. of course. we want to
know about any bugs that slipped by us, so that the
author can fix them. We aiso want to know whether qur

1. Name and APX number of program.

Review Form

instructions are meeting your needs. You are our best
source for suggesting improvementst Please help us by
taking a moment to fill in this review sheet. Foid the sheet
in thirds ang seal it 50 that the address on the bottom of
the back becomes the envelope front. Thank you for
helping us!

2 If you have problems using the program, please describe them here,

3. What do you especially like about this program?

4. What do you think the program’s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

6. Onascaleof 11010, 1 being “poor” and 10 being “excelient”. please rate the following aspects of this program:

Easy to use

User-oriented {e.g.. menus. prompts. clear language)

Enjoyabie

Self-instructive

Useful (non-game programs)
Imaginative graphics and sound

~

7. Describe any technical errors you found in the user instructions (please give page numbers}.

8. What did you especially like about the user instructions?

9. What revisions or additions wouid improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “excellent”. how would you rate the user

instructions and why?

11. Other comments about the program or user instructions:

From

ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

iseal herej

STAMP

